IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i16p2949-d258239.html
   My bibliography  Save this article

A Coupled Modeling Approach for Water Management in a River–Reservoir System

Author

Listed:
  • Zhenyu Zhang

    (Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China)

  • Jinliang Huang

    (Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China)

  • Min Zhou

    (Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China)

  • Yaling Huang

    (Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China)

  • Yimin Lu

    (Spatial Information Research Center of Fujian Province, Fuzhou University, Fuzhou 350108, China)

Abstract

A coupled model is an effective tool to understand the nutrient fate associated with hydrodynamic and ecosystem processes and thereby developing a water resource management strategy. This paper presents a coupled modeling approach that consists of a watershed model and a hydrodynamic model to evaluate the nutrient fate in a river–reservoir system. The results obtained from the model showed a good agreement with field observations. The results revealed that the Shuikou reservoir (Fuzhou, China)exhibited complicated hydrodynamic characteristics, which may induce the pattern of nutrient export. Reservoirs can greatly lower water quality as a result of decreasing water movement. Three scenarios were analyzed for water management. The NH 3 -N (Ammonia Nitrogen) decreased sharply in the outlet of Shuikou reservoir after NH 3 -N level in its tributary was reduced. After removing the farming cages, the water quality of the outlet of Shuikou reservoir was improved significantly. The DO (Dissolved Oxygen) had increased by 3%–10%, NH 3 -N had reduced by 5%–17%, and TP (Total Phosphorus) had reduced by 6%–21%. This study demonstrates that the proposed coupled modeling approach can effectively characterize waterway risks for water management in such a river–reservoir system.

Suggested Citation

  • Zhenyu Zhang & Jinliang Huang & Min Zhou & Yaling Huang & Yimin Lu, 2019. "A Coupled Modeling Approach for Water Management in a River–Reservoir System," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:16:p:2949-:d:258239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/16/2949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/16/2949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Yanpeng & Cai, Jianying & Xu, Linyu & Tan, Qian & Xu, Qiao, 2019. "Integrated risk analysis of water-energy nexus systems based on systems dynamics, orthogonal design and copula analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 125-137.
    2. Shifeng Huang & Wenbin Zang & Mei Xu & Xiaotao Li & Xuecheng Xie & Zhongmin Li & Jisheng Zhu, 2015. "Study on runoff simulation of the upstream of Minjiang River under future climate change scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 139-154, February.
    3. Felzer, Benjamin S., 2012. "Carbon, nitrogen, and water response to climate and land use changes in Pennsylvania during the 20th and 21st centuries," Ecological Modelling, Elsevier, vol. 240(C), pages 49-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    2. Lv, J. & Li, Y.P. & Huang, G.H. & Suo, C. & Mei, H. & Li, Y., 2020. "Quantifying the impact of water availability on China's energy system under uncertainties: A perceptive of energy-water nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Meng, Huixing & Liu, Xuan & Xing, Jinduo & Zio, Enrico, 2022. "A method for economic evaluation of predictive maintenance technologies by integrating system dynamics and evolutionary game modelling," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    5. Gao, Xuerui & Zhao, Yong & Lu, Shibao & Chen, Qianyun & An, Tingli & Han, Xinxueqi & Zhuo, La, 2019. "Impact of coal power production on sustainable water resources management in the coal-fired power energy bases of Northern China," Applied Energy, Elsevier, vol. 250(C), pages 821-833.
    6. Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).
    7. Yitong Yin & Gang Lin & Dong Jiang & Jingying Fu & Donglin Dong, 2021. "Multi-Scenario Simulation of a Water–Energy Coupling System Based on System Dynamics: A Case Study of Ningbo City," Energies, MDPI, vol. 14(18), pages 1-22, September.
    8. Wang, Qingyuan & Zhang, Guomin & Wu, Qihong & Li, Wenyuan & Shi, Long, 2022. "A combined wall and roof solar chimney in one building," Energy, Elsevier, vol. 240(C).
    9. Zhang, Fan & Cui, Ningbo & Guo, Shanshan & Yue, Qiong & Jiang, Shouzheng & Zhu, Bin & Yu, Xiuyun, 2023. "Irrigation strategy optimization in irrigation districts with seasonal agricultural drought in southwest China: A copula-based stochastic multiobjective approach," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Zhang, Tianyuan & Tan, Qian & Wang, Shuping & Zhang, Tong & Hu, Kejia & Zhang, Shan, 2022. "Assessment and management of composite risk in irrigated agriculture under water-food-energy nexus and uncertainty," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).
    12. Zhang, Fan & Cai, Yanpeng & Tan, Qian & Wang, Xuan, 2021. "Spatial water footprint optimization of crop planting: A fuzzy multiobjective optimal approach based on MOD16 evapotranspiration products," Agricultural Water Management, Elsevier, vol. 256(C).
    13. Xu Chen & Ruiguang Han & Ping Feng & Yongjie Wang, 2022. "Combined effects of predicted climate and land use changes on future hydrological droughts in the Luanhe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1305-1337, January.
    14. Cheng, Yang & Jin, Lei & Fu, Haiyan & Fan, Yurui & Bai, Ruolin & Wei, Yi, 2024. "Investigating the impact of climate change and policy orientation on energy–carbon–water nexus under multi-criteria analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Yue, Wencong & Su, Meirong & Cai, Yanpeng & Rong, Qiangqiang & Tan, Zhenkun, 2021. "Reactive nitrogen loss from livestock-based food and biofuel production systems considering climate change and dietary transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Miao, Rui & Guo, Peng & Huang, Wenjie & Li, Qi & Zhang, Bo, 2022. "Profit model for electric vehicle rental service: Sensitive analysis and differential pricing strategy," Energy, Elsevier, vol. 249(C).
    17. Yu, L. & Xiao, Y. & Jiang, S. & Li, Y.P. & Fan, Y.R. & Huang, G.H. & Lv, J. & Zuo, Q.T. & Wang, F.Q., 2020. "A copula-based fuzzy interval-random programming approach for planning water-energy nexus system under uncertainty," Energy, Elsevier, vol. 196(C).
    18. Wenbin Zang & Shu Liu & Shifeng Huang & Jiren Li & Yicheng Fu & Yayong Sun & Jingwei Zheng, 2019. "Impact of urbanization on hydrological processes under different precipitation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1233-1257, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:16:p:2949-:d:258239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.