IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i10p1699-d231160.html
   My bibliography  Save this article

Recovery Degree of the Natural Flow Regimes and the Corresponding Economic Costs for Reservoir Operation in Fish Spawning Seasons

Author

Listed:
  • Cong-Min Liu

    (College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Jun Qiu

    (State Key Laboratory of Hydroscience & Engineering, Tsinghua University, Beijing 100084, China
    State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China)

  • Fang-Fang Li

    (College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China)

Abstract

The construction of large-scale reservoirs alters the natural flow process downstream and inevitably affects the aquatic organism. Current studies have verified that flow regimes play an important role in fish spawning stimulus. Recovery of the flow regimes may be incompatible with the economic benefit, mainly referring to hydropower generation. In this study, multiple models are established to study the relationship between the recovery degree of the natural flow regimes and the cost of the hydropower generation in spawning season for different hydrological years. The flow regimes are first quantitatively described by three characteristic parameters including the number of floods, the average duration of each flood, and the daily increment of the natural flow. The model for ecological operation needs to approach these characteristics as close as possible, while the model for economic benefit is set to generate power as much as possible. The ecological flow constraint is also considered to shape the flow process pattern. The proposed methodology is applied on the upper reaches of the Yellow River, where a large-scale reservoir is under planning. Different schemes are compared for different hydrological years to answer the question that to what extent can we recover the flow regime by reservoir operation, and how much the corresponding economic cost is.

Suggested Citation

  • Cong-Min Liu & Jun Qiu & Fang-Fang Li, 2019. "Recovery Degree of the Natural Flow Regimes and the Corresponding Economic Costs for Reservoir Operation in Fish Spawning Seasons," IJERPH, MDPI, vol. 16(10), pages 1-15, May.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:10:p:1699-:d:231160
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/10/1699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/10/1699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew J. Kotchen & Michael R. Moore & Frank Lupi & Edward S. Rutherford, 2006. "Environmental Constraints on Hydropower: An Ex Post Benefit-Cost Analysis of Dam Relicensing in Michigan," Land Economics, University of Wisconsin Press, vol. 82(3), pages 384-403.
    2. Shengzhi Huang & Jianxia Chang & Qiang Huang & Yimin Wang & Yutong Chen, 2014. "Calculation of the Instream Ecological Flow of the Wei River Based on Hydrological Variation," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, April.
    3. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    4. Zhe Yang & Kan Yang & Hu Hu & Lyuwen Su, 2019. "The Cascade Reservoirs Multi-Objective Ecological Operation Optimization Considering Different Ecological Flow Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 207-228, January.
    5. Timo Räsänen & Jorma Koponen & Hannu Lauri & Matti Kummu, 2012. "Downstream Hydrological Impacts of Hydropower Development in the Upper Mekong Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3495-3513, September.
    6. Chun-Tian Cheng & Wen-Chuan Wang & Dong-Mei Xu & K. Chau, 2008. "Optimizing Hydropower Reservoir Operation Using Hybrid Genetic Algorithm and Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 895-909, July.
    7. Li, Weiming & Chen, Qiuwen & Cai, Desuo & Li, Ruonan, 2015. "Determination of an appropriate ecological hydrograph for a rare fish species using an improved fish habitat suitability model introducing landscape ecology index," Ecological Modelling, Elsevier, vol. 311(C), pages 31-38.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guilfoos, Todd & Walsh, Jason, 2023. "A hedonic study of New England dam removals," Ecological Economics, Elsevier, vol. 203(C).
    2. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    3. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    4. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    5. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    6. Borkowski, Dariusz & Węgiel, Michał & Ocłoń, Paweł & Węgiel, Tomasz, 2019. "CFD model and experimental verification of water turbine integrated with electrical generator," Energy, Elsevier, vol. 185(C), pages 875-883.
    7. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    8. Zi, Dan & Wang, Fujun & Wang, Chaoyue & Huang, Congbin & Shen, Lian, 2021. "Investigation on the air-core vortex in a vertical hydraulic intake system," Renewable Energy, Elsevier, vol. 177(C), pages 1333-1345.
    9. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    10. Matthew J. Kotchen & Laura E. Grant, 2011. "Does Daylight Saving Time Save Energy? Evidence from a Natural Experiment in Indiana," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1172-1185, November.
    11. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    12. Ina Pohle & Anne Gädeke & Sabine Schümberg & Christoph Hinz & Hagen Koch, 2019. "Management Influences on Stream-Flow Variability in the Past and Under Potential Climate Change in a Central European Mining Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5191-5206, December.
    13. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    14. Jure Margeta & Zvonimir Glasnovic, 2011. "Hybrid RES-HEP Systems Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2219-2239, July.
    15. Wenhua Wan & Jianshi Zhao & Jiabiao Wang, 2019. "Revisiting Water Supply Rule Curves with Hedging Theory for Climate Change Adaptation," Sustainability, MDPI, vol. 11(7), pages 1-21, March.
    16. Onur Hınçal & A. Altan-Sakarya & A. Metin Ger, 2011. "Optimization of Multireservoir Systems by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1465-1487, March.
    17. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    18. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    19. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Joseph Aldy & Matthew J. Kotchen & Mary Evans & Meredith Fowlie & Arik Levinson & Karen Palmer, 2021. "Cobenefits and Regulatory Impact Analysis: Theory and Evidence from Federal Air Quality Regulations," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 2(1), pages 117-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:10:p:1699-:d:231160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.