IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i5p976-d146091.html
   My bibliography  Save this article

Improving Physical Fitness and Cognitive Functions in Middle School Students: Study Protocol for the Chinese Childhood Health, Activity and Motor Performance Study (Chinese CHAMPS)

Author

Listed:
  • Zhixiong Zhou

    (Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China
    These authors contributed equally to this work.)

  • Shanshan Dong

    (Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China)

  • Jun Yin

    (Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China)

  • Quan Fu

    (Institute for Sport Performance and Health Promotion, Capital University of Physical Education and Sports, Beijing 100191, China)

  • Hong Ren

    (School of Sport Sciences, Beijing Sport University, Beijing 100084, China)

  • Zenong Yin

    (Department of Kinesiology, Health and Nutrition, The University of Texas at San Antonio, San Antonio, TX 78249, USA
    These authors contributed equally to this work.)

Abstract

Background : Sedentary lifestyles and their associated harmful consequences are public health concerns that impact more than half of the world’s youth population in both developed and developing countries. Methods : The Chinese Childhood Health; Activity and Motor Performance Study (Chinese CHAMPS) was a cluster randomized controlled trial to modify school physical activity policies and the physical education (PE) curriculum; using teacher training and parent engagement to increase opportunities and support students’ physical activity and healthy eating. Using a 2 × 2 factorial design, the study tested the incremental effects of increasing the amount and intensity of physical activity, alongside adding support for healthy eating, on health-related and cognitive function outcomes in Chinese middle school students. Results : The intervention was implemented by PE teachers in 12 middle schools in three Chinese cities, with a targeted enrollment of 650 students from August 2015–June 2016. The assessment of the outcomes involved a test battery of physical fitness and cognitive functioning at both baseline and at the end of the intervention. Process information on implementation was also collected. Discussion : The Chinese CHAMPS is a multi-level intervention that is designed to test the influences of policy and environmental modifications on the physical activity and eating behaviors of middle school students. It also addresses some key weaknesses in school-based physical activity interventions.

Suggested Citation

  • Zhixiong Zhou & Shanshan Dong & Jun Yin & Quan Fu & Hong Ren & Zenong Yin, 2018. "Improving Physical Fitness and Cognitive Functions in Middle School Students: Study Protocol for the Chinese Childhood Health, Activity and Motor Performance Study (Chinese CHAMPS)," IJERPH, MDPI, vol. 15(5), pages 1-15, May.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:5:p:976-:d:146091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/5/976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/5/976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhixiong Zhou & Shiyu Li & Jun Yin & Quan Fu & Hong Ren & Tao Jin & Jiahua Zhu & Jeffrey Howard & Tianwen Lan & Zenong Yin, 2019. "Impact on Physical Fitness of the Chinese CHAMPS: A Clustered Randomized Controlled Trial," IJERPH, MDPI, vol. 16(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M. Murray & Jonathan L. Blitstein, 2003. "Methods To Reduce The Impact Of Intraclass Correlation In Group-Randomized Trials," Evaluation Review, , vol. 27(1), pages 79-103, February.
    2. Patrick E. B. FitzGerald, 2002. "Extended Generalized Estimating Equations for Binary Familial Data with Incomplete Families," Biometrics, The International Biometric Society, vol. 58(4), pages 718-726, December.
    3. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    4. Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.
    5. E. Michael Foster & Grace Y. Fang, 2004. "Alternative Methods for Handling Attrition," Evaluation Review, , vol. 28(5), pages 434-464, October.
    6. Mette Ejrnæs & Anders Holm, 2006. "Comparing Fixed Effects and Covariance Structure Estimators for Panel Data," Sociological Methods & Research, , vol. 35(1), pages 61-83, August.
    7. Geert Verbeke & Geert Molenberghs & Herbert Thijs & Emmanuel Lesaffre & Michael G. Kenward, 2001. "Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach," Biometrics, The International Biometric Society, vol. 57(1), pages 7-14, March.
    8. Rebecca E. Anthony & Amy L. Paine & Katherine H. Shelton, 2019. "Depression and Anxiety Symptoms of British Adoptive Parents: A Prospective Four-Wave Longitudinal Study," IJERPH, MDPI, vol. 16(24), pages 1-14, December.
    9. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    10. Molenberghs, Geert & Verbeke, Geert & Thijs, Herbert & Lesaffre, Emmanuel & Kenward, Michael G., 2001. "Influence analysis to assess sensitivity of the dropout process," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 93-113, July.
    11. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    12. Sebastian Domhof & Edgar Brunner & D. Wayne Osgood, 2002. "Rank Procedures for Repeated Measures with Missing Values," Sociological Methods & Research, , vol. 30(3), pages 367-393, February.
    13. Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    14. Amelia M. Haviland & Bobby L. Jones & Daniel S. Nagin, 2011. "Group-based Trajectory Modeling Extended to Account for Nonrandom Participant Attrition," Sociological Methods & Research, , vol. 40(2), pages 367-390, May.
    15. Shelley A. Blozis & Jeffrey R. Harring, 2017. "Understanding Individual-level Change Through the Basis Functions of a Latent Curve Model," Sociological Methods & Research, , vol. 46(4), pages 793-820, November.
    16. Michael J. Daniels & Joseph W. Hogan, 2000. "Reparameterizing the Pattern Mixture Model for Sensitivity Analyses Under Informative Dropout," Biometrics, The International Biometric Society, vol. 56(4), pages 1241-1248, December.
    17. Lars Relund Nielsen & Erik Jørgensen & Søren Højsgaard, 2011. "Embedding a state space model into a Markov decision process," Annals of Operations Research, Springer, vol. 190(1), pages 289-309, October.
    18. Jennifer Chan & Wai Wan, 2011. "Bayesian approach to analysing longitudinal bivariate binary data with informative dropout," Computational Statistics, Springer, vol. 26(1), pages 121-144, March.
    19. Jayajit Chakraborty & Timothy W. Collins & Sara E. Grineski & Alejandra Maldonado, 2017. "Racial Differences in Perceptions of Air Pollution Health Risk: Does Environmental Exposure Matter?," IJERPH, MDPI, vol. 14(2), pages 1-16, January.
    20. Jolene Birmingham & Garrett M. Fitzmaurice, 2002. "A Pattern-Mixture Model for Longitudinal Binary Responses with Nonignorable Nonresponse," Biometrics, The International Biometric Society, vol. 58(4), pages 989-996, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:5:p:976-:d:146091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.