IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i3p461-d135016.html
   My bibliography  Save this article

Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice

Author

Listed:
  • Dongmin Wang

    (School of Information Engineering, China University of Geosciences, Beijing 100083, China)

  • Xiangnan Liu

    (School of Information Engineering, China University of Geosciences, Beijing 100083, China)

Abstract

Remote sensing can actively monitor heavy metal contamination in crops, but with the increase of satellite sensors, the optimal scale for monitoring heavy metal stress in rice is still unknown. This study focused on identifying the optimal scale by comparing the ability to detect heavy metal stress in rice at various spatial scales. The 2 m, 8 m, and 16 m resolution GF-1 (China) data and the 30 m resolution HJ-1 (China) data were used to invert leaf area index (LAI). The LAI was the input parameter of the World Food Studies (WOFOST) model, and we obtained the dry weight of storage organs (WSO) and dry weight of roots (WRT) through the assimilation method; then, the mass ratio of rice storage organs and roots (SORMR) was calculated. Through the comparative analysis of SORMR at each spatial scale of data, we determined the optimal scale to monitor heavy metal stress in rice. The following conclusions were drawn: (1) SORMR could accurately and effectively monitor heavy metal stress; (2) the 8 m and 16 m images from GF-1 were suitable for monitoring heavy metal stress in rice; (3) 16 m was considered the optimal scale to assess heavy metal stress in rice.

Suggested Citation

  • Dongmin Wang & Xiangnan Liu, 2018. "Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice," IJERPH, MDPI, vol. 15(3), pages 1-15, March.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:461-:d:135016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/3/461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/3/461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kemmoé Tchomté, Sylverin & Gourgand, Michel, 2009. "Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems," International Journal of Production Economics, Elsevier, vol. 121(1), pages 57-67, September.
    2. Mingquan Wu & Wenjiang Huang & Zheng Niu & Changyao Wang, 2015. "Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring," IJERPH, MDPI, vol. 12(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert Corominas & Alberto García-Villoria & Rafael Pastor, 2013. "Metaheuristic algorithms hybridised with variable neighbourhood search for solving the response time variability problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 296-312, July.
    2. Zühal Kartal & Mohan Krishnamoorthy & Andreas T. Ernst, 2019. "Heuristic algorithms for the single allocation p-hub center problem with routing considerations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 99-145, March.
    3. Nearchou, Andreas C., 2011. "Maximizing production rate and workload smoothing in assembly lines using particle swarm optimization," International Journal of Production Economics, Elsevier, vol. 129(2), pages 242-250, February.
    4. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
    5. Xiuhong Li & Chongxiang Sun & Huilong Fan & Jiale Yang, 2024. "Remote-Sensing Satellite Mission Scheduling Optimisation Method under Dynamic Mission Priorities," Mathematics, MDPI, vol. 12(11), pages 1-28, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:461-:d:135016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.