IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i2p281-d130523.html
   My bibliography  Save this article

Stakeholders Opinions on Multi-Use Deep Water Offshore Platform in Hsiao-Liu-Chiu, Taiwan

Author

Listed:
  • Ya-Tsune Sie

    (Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan)

  • Pierre-Alexandre Château

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan)

  • Yang-Chi Chang

    (Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan)

  • Shiau-Yun Lu

    (Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan)

Abstract

This paper describes a group model building activity designed to elicit the potential effects a projected multi-use deep water offshore platform may have on its local environment, including ecological and socio-economic issues. As such a platform is proposed for construction around the island of Hsiao-Liu-Chiu, Taiwan, we organized several meetings with the local stakeholders and structured the debates using group modeling methods to promote consensus. During the process, the participants iteratively built and revised a causal-loop diagram that summarizes their opinions. Overall, local stakeholders concluded that a multi-use deep water offshore marine platform might have beneficial effects for Hsiao-Liu-Chiu because more tourists and fish could be attracted by the structure, but they also raised some potential problems regarding the law in Taiwan and the design of the offshore platform, especially its resistance to extreme weather. We report the method used and the main results and insights gained during the process.

Suggested Citation

  • Ya-Tsune Sie & Pierre-Alexandre Château & Yang-Chi Chang & Shiau-Yun Lu, 2018. "Stakeholders Opinions on Multi-Use Deep Water Offshore Platform in Hsiao-Liu-Chiu, Taiwan," IJERPH, MDPI, vol. 15(2), pages 1-13, February.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:281-:d:130523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/2/281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/2/281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Château, Pierre-Alexandre & Huang, Yuan-Chao Angelo & Chen, Chaolun Allen & Chang, Yang-Chi, 2015. "Integrated assessment of sustainable marine cage culture through system dynamics modeling," Ecological Modelling, Elsevier, vol. 299(C), pages 140-146.
    2. Lane, David C., 1992. "Modelling as learning: A consultancy methodology for enhancing learning in management teams," European Journal of Operational Research, Elsevier, vol. 59(1), pages 64-84, May.
    3. Weller, Florian & Sherley, Richard B. & Waller, Lauren J. & Ludynia, Katrin & Geldenhuys, Deon & Shannon, Lynne J. & Jarre, Astrid, 2016. "System dynamics modelling of the Endangered African penguin populations on Dyer and Robben islands, South Africa," Ecological Modelling, Elsevier, vol. 327(C), pages 44-56.
    4. Peter Otto & Jeroen Struben, 2004. "Gloucester Fishery : Insights from a Group Modeling Intervention," Post-Print hal-02312278, HAL.
    5. Shields, Mark A. & Dillon, Lora Jane & Woolf, David K. & Ford, Alex T., 2009. "Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK)," Marine Policy, Elsevier, vol. 33(4), pages 635-642, July.
    6. Krystyna A. Stave, 2002. "Using system dynamics to improve public participation in environmental decisions," System Dynamics Review, System Dynamics Society, vol. 18(2), pages 139-167, June.
    7. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    8. B C Dangerfield, 1999. "System dynamics applications to European health care issues," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(4), pages 345-353, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waggitt, J.J & Scott, B.E, 2014. "Using a spatial overlap approach to estimate the risk of collisions between deep diving seabirds and tidal stream turbines: A review of potential methods and approaches," Marine Policy, Elsevier, vol. 44(C), pages 90-97.
    2. D F Andersen & J A M Vennix & G P Richardson & E A J A Rouwette, 2007. "Group model building: problem structuring, policy simulation and decision support," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(5), pages 691-694, May.
    3. Inomata, Sandrelly Oliveira & Gonzalez, Alba Maria Guadalupe Orellana & Román, Rodrigo Máximo Sánchez & de Souza, Lucirene Aguiar & de Carvalho Freitas, Carlos Edwar, 2018. "Sustainability of small-scale fisheries in the middle Negro River (Amazonas – Brazil): A model with operational and biological variables," Ecological Modelling, Elsevier, vol. 368(C), pages 312-320.
    4. Federico Cosenz & Guido Noto, 2016. "Applying System Dynamics Modelling to Strategic Management: A Literature Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 33(6), pages 703-741, November.
    5. Chiu, Chang-Chieh & Château, Pierre-Alexandre & Lin, Hsing-Juh & Chang, Yang-Chi, 2019. "Modeling the impacts of coastal land use changes on regional carbon balance in the Chiku coastal zone, Taiwan," Land Use Policy, Elsevier, vol. 87(C).
    6. Nuno Videira & Rita Lopes & Paula Antunes & Rui Santos & José Luís Casanova, 2012. "Mapping Maritime Sustainability Issues with Stakeholder Groups," Systems Research and Behavioral Science, Wiley Blackwell, vol. 29(6), pages 596-619, November.
    7. Alberto Sardi & Enrico Sorano, 2019. "Dynamic Performance Management: An Approach for Managing the Common Goods," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    8. BenDor, Todd & Scheffran, Jürgen & Hannon, Bruce, 2009. "Ecological and economic sustainability in fishery management: A multi-agent model for understanding competition and cooperation," Ecological Economics, Elsevier, vol. 68(4), pages 1061-1073, February.
    9. Martínez, M.L. & Vázquez, G. & Pérez-Maqueo, O. & Silva, R. & Moreno-Casasola, P. & Mendoza-González, G. & López-Portillo, J. & MacGregor-Fors, I. & Heckel, G. & Hernández-Santana, J.R. & García-Franc, 2021. "A systemic view of potential environmental impacts of ocean energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    11. Carissa J Champlin & Johannes Flacke & Geert PMR Dewulf, 2022. "A game co-design method to elicit knowledge for the contextualization of spatial models," Environment and Planning B, , vol. 49(3), pages 1074-1090, March.
    12. A. Sardi & E. Sorano, 2021. "Dynamic Performance Management: An Approach for Managing the Common Goods," Papers 2102.04090, arXiv.org.
    13. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    14. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    15. Shen, Haixue & Zydlewski, Gayle Barbin & Viehman, Haley A. & Staines, Garrett, 2016. "Estimating the probability of fish encountering a marine hydrokinetic device," Renewable Energy, Elsevier, vol. 97(C), pages 746-756.
    16. Laura Schmitt Olabisi & Amadou Sidibé, 2023. "Observations from a system dynamics modeling field school in Mali," System Dynamics Review, System Dynamics Society, vol. 39(1), pages 80-94, January.
    17. Elias Hartvigsson & Erik Oscar Ahlgren & Sverker Molander, 2020. "Tackling complexity and problem formulation in rural electrification through conceptual modelling in system dynamics," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(1), pages 141-153, January.
    18. Hendra Hendra & Dhimas Satria & Hernadewita Hernadewita & Yozerizal Yozerizal & Frengki Hardian & Ahmed M. Galal, 2023. "Performance of Generator Translation and Rotation on Stroke Length Drive of the Two-Rod Mechanism in Renewable Energy Power Plant," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    19. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    20. du Feu, R.J. & Funke, S.W. & Kramer, S.C. & Hill, J. & Piggott, M.D., 2019. "The trade-off between tidal-turbine array yield and environmental impact: A habitat suitability modelling approach," Renewable Energy, Elsevier, vol. 143(C), pages 390-403.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:281-:d:130523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.