IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i1p148-d127580.html
   My bibliography  Save this article

Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians

Author

Listed:
  • Young-Jae Kim

    (Department of Forest Resources and Landscape Architecture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea)

  • Chanam Lee

    (Department of Landscape Architecture and Urban Planning, Texas A&M University, 3137 TAMU, College Station, TX 77843, USA)

  • Jun-Hyun Kim

    (Landscape Architecture Program, School of Planning, Design and Construction, Michigan State University, 552 W Circle Drive, East Lansing, MI 48824, USA)

Abstract

Walking is being promoted for health and transportation purposes across all climatic regions in the US and beyond. Despite this, an uncomfortable microclimate condition along sidewalks is one of the major deterrents of walking, and more empirical research is needed to determine the risks of heat exposure to pedestrians while walking. This study examined the effect of street trees and grass along sidewalks on air temperatures. A series of thermal images were taken at the average heights of adults and children in the US to objectively measure the air temperatures of 10 sidewalk segments in College Station, TX, USA. After controlling the other key physical environmental conditions, sidewalks with more trees or wider grass buffer areas had lower air temperatures than those with less vegetation. Children were exposed to higher temperatures due to the greater exposure or proximity to the pavement surface, which tends to have higher radiant heat. Multivariate regression analysis suggested that the configuration of trees and grass buffers along the sidewalks helped to promote pleasant thermal conditions and reduced the differences in ambient air temperatures measured at child and adult heights. This study suggests that street trees and vegetated ground help reduce the air temperatures, leading to more thermally comfortable environments for both child and adult pedestrians in warm climates. The thermal implications of street landscape require further attention by researchers and policy makers that are interested in promoting outdoor walking.

Suggested Citation

  • Young-Jae Kim & Chanam Lee & Jun-Hyun Kim, 2018. "Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians," IJERPH, MDPI, vol. 15(1), pages 1-12, January.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:1:p:148-:d:127580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/1/148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/1/148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saelens, B.E. & Sallis, J.F. & Black, J.B. & Chen, D., 2003. "Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1552-1558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young-Jae Kim & Chanam Lee, 2020. "Built and Natural Environmental Correlates of Parental Safety Concerns for Children’s Active Travel to School," IJERPH, MDPI, vol. 17(2), pages 1-13, January.
    2. Adrian Buttazzoni & Leia Minaker, 2023. "Associations between adolescent mental health and pedestrian- and transit-oriented urban design qualities: Evidence from a national-level online Canadian survey," Urban Studies, Urban Studies Journal Limited, vol. 60(10), pages 1968-1986, August.
    3. Nataliia Vernihorova, 2021. "Institutional Prerequisites For Organizational And Economic Quality Assurance Of Ecosystem Services Of City Parks," Three Seas Economic Journal, Publishing house "Baltija Publishing", vol. 2(3).
    4. Sara Barron & Sophie Nitoslawski & Kathleen L. Wolf & Angie Woo & Erin Desautels & Stephen R. J. Sheppard, 2019. "Greening Blocks: A Conceptual Typology of Practical Design Interventions to Integrate Health and Climate Resilience Co-Benefits," IJERPH, MDPI, vol. 16(21), pages 1-21, November.
    5. Young-Jae Kim & Ryun Jung Lee & Taehwa Lee & Yongchul Shin, 2023. "Green Infrastructure and Urban Vacancies: Land Cover and Natural Environment as Predictors of Vacant Land in Austin, Texas," Land, MDPI, vol. 12(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anura Amarasinghe & Gerard D'Souza & Cheryl Brown & Tatiana Borisova, 2006. "A Spatial Analysis of Obesity in West Virginia," Working Papers Working Paper 2006-13, Regional Research Institute, West Virginia University.
    2. Spielman, Seth E. & Yoo, Eun-hye, 2009. "The spatial dimensions of neighborhood effects," Social Science & Medicine, Elsevier, vol. 68(6), pages 1098-1105, March.
    3. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    4. Mi Namgung & B. Elizabeth Mercado Gonzalez & Seungwoo Park, 2019. "The Role of Built Environment on Health of Older Adults in Korea: Obesity and Gender Differences," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    5. Courtney Coughenour & Hanns de la Fuente-Mella & Alexander Paz, 2019. "Analysis of Self-Reported Walking for Transit in a Sprawling Urban Metropolitan Area in the Western U.S," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    6. Eric T. H. Chan & Tim Schwanen & David Banister, 2021. "The role of perceived environment, neighbourhood characteristics, and attitudes in walking behaviour: evidence from a rapidly developing city in China," Transportation, Springer, vol. 48(1), pages 431-454, February.
    7. McNeill, Lorna Haughton & Kreuter, Matthew W. & Subramanian, S.V., 2006. "Social Environment and Physical activity: A review of concepts and evidence," Social Science & Medicine, Elsevier, vol. 63(4), pages 1011-1022, August.
    8. Fernando Fonseca & Escolástica Fernandes & Rui Ramos, 2022. "Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    9. repec:rri:wpaper:200613 is not listed on IDEAS
    10. Kent, Jennifer L. & Mulley, Corinne & Stevens, Nick, 2020. "Challenging policies that prohibit public transport use: Travelling with pets as a case study," Transport Policy, Elsevier, vol. 99(C), pages 86-94.
    11. Victor O. Akande & Robert A.C. Ruiter & Stef P.J. Kremers, 2019. "Environmental and Motivational Determinants of Physical Activity among Canadian Inuit in the Arctic," IJERPH, MDPI, vol. 16(13), pages 1-14, July.
    12. Letizia Appolloni & Maria Vittoria Corazza & Daniela D’Alessandro, 2019. "The Pleasure of Walking: An Innovative Methodology to Assess Appropriate Walkable Performance in Urban Areas to Support Transport Planning," Sustainability, MDPI, vol. 11(12), pages 1-26, June.
    13. Jun-Hyun Kim & Chanam Lee & Wonmin Sohn, 2016. "Urban Natural Environments, Obesity, and Health-Related Quality of Life among Hispanic Children Living in Inner-City Neighborhoods," IJERPH, MDPI, vol. 13(1), pages 1-15, January.
    14. Park, Sungjin, 2008. "Defining, Measuring, and Evaluating Path Walkability, and Testing Its Impacts on Transit Users’ Mode Choice and Walking Distance to the Station," University of California Transportation Center, Working Papers qt0ct7c30p, University of California Transportation Center.
    15. Razieh Zandieh & Javier Martinez & Johannes Flacke & Phil Jones & Martin Van Maarseveen, 2016. "Older Adults’ Outdoor Walking: Inequalities in Neighbourhood Safety, Pedestrian Infrastructure and Aesthetics," IJERPH, MDPI, vol. 13(12), pages 1-24, November.
    16. Guillem Artigues & Sara Mateo & Maria Ramos & Elena Cabeza, 2020. "Validation of the Urban Walkability Perception Questionnaire (UWPQ) in the Balearic Islands," IJERPH, MDPI, vol. 17(18), pages 1-16, September.
    17. Zimu Jia & Long Chen & Jingjia Chen & Guowei Lyu & Ding Zhou & Ying Long, 2020. "Urban modeling for streets using vector cellular automata: Framework and its application in Beijing," Environment and Planning B, , vol. 47(8), pages 1418-1439, October.
    18. Mouhcine Guettabi & Abdul Munasib, 2014. "Urban Sprawl, Obesogenic Environment, And Child Weight," Journal of Regional Science, Wiley Blackwell, vol. 54(3), pages 378-401, June.
    19. Neatt, Kevin & Millward, Hugh & Spinney, Jamie, 2017. "Neighborhood walking densities: A multivariate analysis in Halifax, Canada," Journal of Transport Geography, Elsevier, vol. 61(C), pages 9-16.
    20. Deepti Adlakha & J. Aaron Hipp & James F. Sallis & Ross C. Brownson, 2018. "Exploring Neighborhood Environments and Active Commuting in Chennai, India," IJERPH, MDPI, vol. 15(9), pages 1-15, August.
    21. Lin Lin & Xueming (Jimmy) Chen & Anne Vernez Moudon, 2021. "Measuring the Urban Forms of Shanghai’s City Center and Its New Districts: A Neighborhood-Level Comparative Analysis," Sustainability, MDPI, vol. 13(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:1:p:148-:d:127580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.