IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i1p128-d126795.html
   My bibliography  Save this article

Atmospheric Environment Vulnerability Cause Analysis for the Beijing-Tianjin-Hebei Metropolitan Region

Author

Listed:
  • Yang Zhang

    (Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China)

  • Jing Shen

    (Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China)

  • Yu Li

    (Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China)

Abstract

Assessing and quantifying atmospheric vulnerability is a key issue in urban environmental protection and management. This paper integrated the Analytical hierarchy process (AHP), fuzzy synthesis evaluation and Geographic Information System (GIS) spatial analysis into an Exposure-Sensitivity-Adaptive capacity (ESA) framework to quantitatively assess atmospheric environment vulnerability in the Beijing-Tianjin-Hebei (BTH) region with spatial and temporal comparisons. The elaboration of the relationships between atmospheric environment vulnerability and indices of exposure, sensitivity, and adaptive capacity supports enable analysis of the atmospheric environment vulnerability. Our findings indicate that the atmospheric environment vulnerability of 13 cities in the BTH region exhibits obvious spatial heterogeneity, which is caused by regional diversity in exposure, sensitivity, and adaptive capacity indices. The results of atmospheric environment vulnerability assessment and the cause analysis can provide guidance to pick out key control regions and recognize vulnerable indicators for study sites. The framework developed in this paper can also be replicated at different spatial and temporal scales using context-specific datasets to support environmental management.

Suggested Citation

  • Yang Zhang & Jing Shen & Yu Li, 2018. "Atmospheric Environment Vulnerability Cause Analysis for the Beijing-Tianjin-Hebei Metropolitan Region," IJERPH, MDPI, vol. 15(1), pages 1-21, January.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:1:p:128-:d:126795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/1/128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/1/128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angeon, Valérie & Bates, Samuel, 2015. "Reviewing Composite Vulnerability and Resilience Indexes: A Sustainable Approach and Application," World Development, Elsevier, vol. 72(C), pages 140-162.
    2. Costa, J.M. & Vaz, M. & Escalona, J. & Egipto, R. & Lopes, C. & Medrano, H. & Chaves, M.M., 2016. "Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity," Agricultural Water Management, Elsevier, vol. 164(P1), pages 5-18.
    3. Kermanshah, A. & Derrible, S., 2016. "A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenying Li & Tiantian Zhang & Xi Wang & Zefeng Lian, 2022. "Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case Study of Nanjing, China," IJERPH, MDPI, vol. 19(20), pages 1-27, October.
    2. Cheng Han & Yang Zhang & Jing Shen, 2022. "Fuzzy-Based Ecological Vulnerability Assessment Driven by Human Impacts in China," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    3. Xuan Wei & Lihua Zhou & Guojing Yang & Ya Wang & Yong Chen, 2020. "Assessing the Effects of Desertification Control Projects from the Farmers’ Perspective: A Case Study of Yanchi County, Northern China," IJERPH, MDPI, vol. 17(3), pages 1-15, February.
    4. Qi Chen & Hongyan Su & Xuan Yu & Qiuguang Hu, 2020. "Livelihood Vulnerability of Marine Fishermen to Multi-Stresses under the Vessel Buyback and Fishermen Transfer Programs in China: The Case of Zhoushan City, Zhejiang Province," IJERPH, MDPI, vol. 17(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.
    2. Douglas K. Bardsley & Annette M. Bardsley & Marco Conedera, 2023. "The dispersion of climate change impacts from viticulture in Ticino, Switzerland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-25, March.
    3. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    4. Lan, Xiao & Zhang, Qin & Xue, Haili & Liang, Haoguang & Wang, Bojie & Wang, Weijun, 2021. "Linking sustainable livelihoods with sustainable grassland use and conservation: A case study from rural households in a semi-arid grassland area, China," Land Use Policy, Elsevier, vol. 101(C).
    5. Blazy, J.M. & Causeret, F. & Guyader, S., 2021. "Immediate impacts of COVID-19 crisis on agricultural and food systems in the Caribbean," Agricultural Systems, Elsevier, vol. 190(C).
    6. Claire Goavec & Jean-François Hoarau, 2015. "Structural economic vulnerability and tourism dependence: new assessment for small island developing economies [Vulnérabilité économique structurelle et dépendance touristique : quels enseignements," Post-Print hal-01454720, HAL.
    7. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    8. Wei Zhang & Qianxing Zhao & Minjie Pei, 2021. "How much uncertainty does the choice of data transforming method brings to heat risk mapping? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 349-373, March.
    9. Xueyan Zhao & Huanhuan Chen & Haili Zhao & Bing Xue, 2022. "Farmer households’ livelihood resilience in ecological-function areas: case of the Yellow River water source area of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9665-9686, July.
    10. Luigino Barisan & Marco Lucchetta & Cristian Bolzonella & Vasco Boatto, 2019. "How Does Carbon Footprint Create Shared Values in the Wine Industry? Empirical Evidence from Prosecco Superiore PDO’s Wine District," Sustainability, MDPI, vol. 11(11), pages 1-13, May.
    11. Ahmad, Nasir & Derrible, Sybil, 2018. "An information theory based robustness analysis of energy mix in US States," Energy Policy, Elsevier, vol. 120(C), pages 167-174.
    12. Stéphane Blancard & Maximin Bonnet & Jean-François Hoarau, 2020. "The specific role of agriculture for economic vulnerability of small island spaces," Working Papers hal-02441237, HAL.
    13. Buesa, I. & Torres, N. & Tortosa, I. & Marín, D. & Villa-Llop, A. & Douthe, C. & Santesteban, L.G. & Medrano, H. & Escalona, J.M., 2023. "Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    15. Ryszard Kata & Małgorzata Wosiek, 2024. "Income Variability of Agricultural Households in Poland: A Descriptive Study," Agriculture, MDPI, vol. 14(3), pages 1-17, February.
    16. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    17. Liaqat Ali & Muhammad Kamran Naqi Khan & Habib Ahmad, 2020. "Financial Fragility of Pakistani Household," Journal of Family and Economic Issues, Springer, vol. 41(3), pages 572-590, September.
    18. Knippenberg, Erwin & Jensen, Nathaniel & Constas, Mark, 2019. "Quantifying household resilience with high frequency data: Temporal dynamics and methodological options," World Development, Elsevier, vol. 121(C), pages 1-15.
    19. Ilan Noy & Rio Yonson, 2018. "Economic Vulnerability and Resilience to Natural Hazards: A Survey of Concepts and Measurements," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    20. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:1:p:128-:d:126795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.