IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i12p2639-d185383.html
   My bibliography  Save this article

Mapping Multi-Disease Risk during El Niño: An Ecosyndemic Approach

Author

Listed:
  • Ivan J. Ramírez

    (Department of Geography and Environmental Sciences, University of Colorado Denver, Denver, CO 80217-3364, USA
    Consortium for Capacity Building/Institute for Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80309-0450, USA)

  • Jieun Lee

    (Department of Geography and GIS, University of Northern Colorado, Greeley, CO 80639, USA)

  • Sue C. Grady

    (Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA)

Abstract

El Niño is a quasi-periodic pattern of climate variability and extremes often associated with hazards and disease. While El Niño links to individual diseases have been examined, less is known about the cluster of multi-disease risk referred to as an ecosyndemic, which emerges during extreme events. The objective of this study was to explore a mapping approach to represent the spatial distribution of ecosyndemics in Piura, Peru at the district-level during the first few months of 1998. Using geographic information systems and multivariate analysis, descriptive and analytical methodologies were employed to map disease overlap of 7 climate-sensitive diseases and construct an ecosyndemic index, which was then mapped and applied to another El Niño period as proof of concept. The main findings showed that many districts across Piura faced multi-disease risk over several weeks in the austral summer of 1998. The distribution of ecosyndemics were spatially clustered in western Piura among 11 districts. Furthermore, the ecosydemic index in 1998 when compared to 1983 showed a strong positive correlation, demonstrating the potential utility of the index. The study supports PAHO efforts to develop multi-disease based and interprogrammatic approaches to control and prevention, particularly for climate and poverty-related infections in Latin America and the Caribbean.

Suggested Citation

  • Ivan J. Ramírez & Jieun Lee & Sue C. Grady, 2018. "Mapping Multi-Disease Risk during El Niño: An Ecosyndemic Approach," IJERPH, MDPI, vol. 15(12), pages 1-29, November.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2639-:d:185383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/12/2639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/12/2639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    2. Michael Xiaoliang Tong & Alana Hansen & Scott Hanson-Easey & Scott Cameron & Jianjun Xiang & Qiyong Liu & Yehuan Sun & Philip Weinstein & Gil-Soo Han & Craig Williams & Peng Bi, 2015. "Infectious Diseases, Urbanization and Climate Change: Challenges in Future China," IJERPH, MDPI, vol. 12(9), pages 1-12, September.
    3. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    2. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    3. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    4. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    5. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    6. Weiwei Xie & Qingmin Meng, 2023. "An Integrated PCA–AHP Method to Assess Urban Social Vulnerability to Sea Level Rise Risks in Tampa, Florida," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    7. Hameeda Sultan & Jinyan Zhan & Wajid Rashid & Xi Chu & Eve Bohnett, 2022. "Systematic Review of Multi-Dimensional Vulnerabilities in the Himalayas," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    8. Kangmin Kim & Jeon-Young Kang & Chulsue Hwang, 2025. "Identifying Indicators Contributing to the Social Vulnerability Index via a Scoping Review," Land, MDPI, vol. 14(2), pages 1-29, January.
    9. Khaksar, Seyed Mohammad Sadegh & Khosla, Rajiv & Chu, Mei Tai & Shahmehr, Fatemeh S., 2016. "Service Innovation Using Social Robot to Reduce Social Vulnerability among Older People in Residential Care Facilities," Technological Forecasting and Social Change, Elsevier, vol. 113(PB), pages 438-453.
    10. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.
    11. Yuan Zhao & Ronak Paul & Sean Reid & Carolina Coimbra Vieira & Chris Wolfe & Yan Zhang & Rumi Chunara, 2024. "Constructing Social Vulnerability Indexes with Increased Data and Machine Learning Highlight the Importance of Wealth Across Global Contexts," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 175(2), pages 639-657, November.
    12. Stephanie Chang & Jackie Yip & Shona Zijll de Jong & Rebecca Chaster & Ashley Lowcock, 2015. "Using vulnerability indicators to develop resilience networks: a similarity approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1827-1841, September.
    13. Christopher G. Burton & Miguel Toquica & Khan Mortuza Bin Asad & Michael Musori, 2022. "Validation and development of composite indices for measuring vulnerability to earthquakes using a socio-economic perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1301-1334, March.
    14. Tanja Wolf & Wen-Ching Chuang & Glenn McGregor, 2015. "On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?," IJERPH, MDPI, vol. 12(10), pages 1-29, October.
    15. Alondra Chamorro & Tomás Echaveguren & Eduardo Allen & Marta Contreras & Joaquín Dagá & Hernan de Solminihac & Luis E. Lara, 2020. "Sustainable Risk Management of Rural Road Networks Exposed to Natural Hazards: Application to Volcanic Lahars in Chile," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    16. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    17. Yago Martín & Marcos Rodrigues Mimbrero & María Zúñiga-Antón, 2017. "Community vulnerability to hazards: introducing local expert knowledge into the equation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 367-386, October.
    18. J. Connor Darlington & Niko Yiannakoulias & Amin Elshorbagy, 2022. "Changes in social vulnerability to flooding: a quasi-experimental analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2487-2509, April.
    19. Ibolya Török & Adina-Eliza Croitoru & Titus-Cristian Man, 2021. "Assessing the Impact of Extreme Temperature Conditions on Social Vulnerability," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    20. Matthias Garschagen & Deepal Doshi & Jonathan Reith & Michael Hagenlocher, 2021. "Global patterns of disaster and climate risk—an analysis of the consistency of leading index-based assessments and their results," Climatic Change, Springer, vol. 169(1), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:12:p:2639-:d:185383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.