IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i6p619-d100946.html
   My bibliography  Save this article

Ecological Niche Modeling Identifies Fine-Scale Areas at High Risk of Dengue Fever in the Pearl River Delta, China

Author

Listed:
  • Qiaoxuan Li

    (College of Geographical Sciences, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China
    State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • Hongyan Ren

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • Lan Zheng

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China
    Key Laboratory of Geographic Information Sciences, Ministry of Education, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China)

  • Wei Cao

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • An Zhang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • Dafang Zhuang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • Liang Lu

    (State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC, No.5 Changbai Road, Changping District, Beijing 102206, China)

  • Huixian Jiang

    (College of Geographical Sciences, Fujian Normal University, No. 8 Shangsan Road, Fuzhou 350007, China)

Abstract

Dengue fever (DF) is one of the most common and rapidly spreading mosquito-borne viral diseases in tropical and subtropical regions. In recent years, this imported disease has posed a serious threat to public health in China, especially in the Pearl River Delta (PRD). Although the severity of DF outbreaks in the PRD is generally associated with known risk factors, fine scale assessments of areas at high risk for DF outbreaks are limited. We built five ecological niche models to identify such areas including a variety of climatic, environmental, and socioeconomic variables, as well as, in some models, extracted principal components. All the models we tested accurately identified the risk of DF, the area under the receiver operating characteristic curve (AUC) were greater than 0.8, but the model using all original variables was the most accurate (AUC = 0.906). Socioeconomic variables had a greater impact on this model (total contribution 55.27%) than climatic and environmental variables (total contribution 44.93%). We found the highest risk of DF outbreaks on the border of Guangzhou and Foshan (in the central PRD), and in northern Zhongshan (in the southern PRD). Our fine-scale results may help health agencies to focus epidemic monitoring tightly on the areas at highest risk of DF outbreaks.

Suggested Citation

  • Qiaoxuan Li & Hongyan Ren & Lan Zheng & Wei Cao & An Zhang & Dafang Zhuang & Liang Lu & Huixian Jiang, 2017. "Ecological Niche Modeling Identifies Fine-Scale Areas at High Risk of Dengue Fever in the Pearl River Delta, China," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:6:p:619-:d:100946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/6/619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/6/619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaopeng Qi & Yong Wang & Yue Li & Yujie Meng & Qianqian Chen & Jiaqi Ma & George F Gao, 2015. "The Effects of Socioeconomic and Environmental Factors on the Incidence of Dengue Fever in the Pearl River Delta, China, 2013," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(10), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi Yin & Chao Ren & Yuan Shi & Junyi Hua & Hsiang-Yu Yuan & Lin-Wei Tian, 2022. "A Systematic Review on Modeling Methods and Influential Factors for Mapping Dengue-Related Risk in Urban Settings," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    2. Hongyan Ren & Lan Zheng & Qiaoxuan Li & Wu Yuan & Liang Lu, 2017. "Exploring Determinants of Spatial Variations in the Dengue Fever Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-Foshan Area, China, 2014," IJERPH, MDPI, vol. 14(12), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renaud Marti & Zhichao Li & Thibault Catry & Emmanuel Roux & Morgan Mangeas & Pascal Handschumacher & Jean Gaudart & Annelise Tran & Laurent Demagistri & Jean-François Faure & José Joaquín Carvajal & , 2020. "A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires," Post-Print hal-02682042, HAL.
    2. Zheng Cao & Tao Liu & Xing Li & Jin Wang & Hualiang Lin & Lingling Chen & Zhifeng Wu & Wenjun Ma, 2017. "Individual and Interactive Effects of Socio-Ecological Factors on Dengue Fever at Fine Spatial Scale: A Geographical Detector-Based Analysis," IJERPH, MDPI, vol. 14(7), pages 1-14, July.
    3. Shi Yin & Chao Ren & Yuan Shi & Junyi Hua & Hsiang-Yu Yuan & Lin-Wei Tian, 2022. "A Systematic Review on Modeling Methods and Influential Factors for Mapping Dengue-Related Risk in Urban Settings," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    4. Hongyan Ren & Lan Zheng & Qiaoxuan Li & Wu Yuan & Liang Lu, 2017. "Exploring Determinants of Spatial Variations in the Dengue Fever Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-Foshan Area, China, 2014," IJERPH, MDPI, vol. 14(12), pages 1-13, December.
    5. Chi-Chieh Huang & Tuen Yee Tiffany Tam & Yinq-Rong Chern & Shih-Chun Candice Lung & Nai-Tzu Chen & Chih-Da Wu, 2018. "Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness," IJERPH, MDPI, vol. 15(9), pages 1-12, August.
    6. Haogao Gu & Ross Ka-Kit Leung & Qinlong Jing & Wangjian Zhang & Zhicong Yang & Jiahai Lu & Yuantao Hao & Dingmei Zhang, 2016. "Meteorological Factors for Dengue Fever Control and Prevention in South China," IJERPH, MDPI, vol. 13(9), pages 1-12, August.
    7. Shuli Zhou & Suhong Zhou & Lin Liu & Meng Zhang & Min Kang & Jianpeng Xiao & Tie Song, 2019. "Examining the Effect of the Environment and Commuting Flow from/to Epidemic Areas on the Spread of Dengue Fever," IJERPH, MDPI, vol. 16(24), pages 1-13, December.
    8. Ting-Wu Chuang & Ka-Chon Ng & Thi Luong Nguyen & Luis Fernando Chaves, 2018. "Epidemiological Characteristics and Space-Time Analysis of the 2015 Dengue Outbreak in the Metropolitan Region of Tainan City, Taiwan," IJERPH, MDPI, vol. 15(3), pages 1-12, February.
    9. Jiucheng Xu & Keqiang Xu & Zhichao Li & Fengxia Meng & Taotian Tu & Lei Xu & Qiyong Liu, 2020. "Forecast of Dengue Cases in 20 Chinese Cities Based on the Deep Learning Method," IJERPH, MDPI, vol. 17(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:6:p:619-:d:100946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.