IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i5p456-d96711.html
   My bibliography  Save this article

Levels and Distribution of Pollutants in the Waters of an Aquatic Ecosystem in Northern Mexico

Author

Listed:
  • Jesús Manuel Ochoa-Rivero

    (Sitio Experimental la Campana, CIRNOC, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 33.3 Carretera Chihuahua-Ojinaga. Aldama, Chihuahua C.P. 32910, Mexico)

  • Ana Victoria Reyes-Fierro

    (Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus Universitario #2, Circuito Universitario, Chihuahua, Chihuahua C.P. 31125, Mexico)

  • Ma. Del Rosario Peralta-Pérez

    (Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus Universitario #2, Circuito Universitario, Chihuahua, Chihuahua C.P. 31125, Mexico)

  • Francisco Javier Zavala-Díaz de la Serna

    (Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus Universitario #2, Circuito Universitario, Chihuahua, Chihuahua C.P. 31125, Mexico)

  • Lourdes Ballinas-Casarrubias

    (Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus Universitario #2, Circuito Universitario, Chihuahua, Chihuahua C.P. 31125, Mexico)

  • Ivan Salmerón

    (Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus Universitario #2, Circuito Universitario, Chihuahua, Chihuahua C.P. 31125, Mexico)

  • Héctor Rubio-Arias

    (Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico. R. Almada, km. 1. Chihuahua, Chihuahua C.P. 31453, Mexico)

  • Beatriz A. Rocha-Gutiérrez

    (Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus Universitario #2, Circuito Universitario, Chihuahua, Chihuahua C.P. 31125, Mexico)

Abstract

The availability of good quality water resources is essential to ensure healthy crops and livestock. The objective of this study was to evaluate the level of pollution in Bustillos Lagoon in northern Mexico. Physical-chemical parameters like sodium, chloride, sulfate, electrical conductivity, nitrates, and the pesticide dichlorodiphenyltrichloroethane (DDT) were analyzed to determine the water quality available in the lagoon. Although DDT has been banned in several countries, it is still used for agricultural purposes in Mexico and its presence in this area had not been analyzed previously. Bustillos Lagoon was divided into three zones for the evaluation: (1) industrial; (2) communal lands; and (3) agricultural. The highest concentrations of sodium (2360 mg/L) and SAR (41 meq/L) reported in the industrial zone are values exceeding the United Nations Food and Agricultural Organization (FAO) irrigation water quality guidelines. DDT and its metabolites were detected in all of the 21 sites analyzed, in the agricultural zone ?DDTs = 2804 ng/mL, this level is much higher than those reported for other water bodies in Mexico and around the world where DDT has been used heavily. The water in the communal zone is the least contaminated, but can only be recommended for irrigation of plants with high stress tolerance and not for crops.

Suggested Citation

  • Jesús Manuel Ochoa-Rivero & Ana Victoria Reyes-Fierro & Ma. Del Rosario Peralta-Pérez & Francisco Javier Zavala-Díaz de la Serna & Lourdes Ballinas-Casarrubias & Ivan Salmerón & Héctor Rubio-Arias & B, 2017. "Levels and Distribution of Pollutants in the Waters of an Aquatic Ecosystem in Northern Mexico," IJERPH, MDPI, vol. 14(5), pages 1-12, April.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:5:p:456-:d:96711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/5/456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/5/456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sato, Toshio & Qadir, Manzoor & Yamamoto, Sadahiro & Endo, Tsuneyoshi & Zahoor, Ahmad, 2013. "Global, regional, and country level need for data on wastewater generation, treatment, and use," Agricultural Water Management, Elsevier, vol. 130(C), pages 1-13.
    2. Hassanli, Ali Morad & Ebrahimizadeh, Mohammad Ali & Beecham, Simon, 2009. "The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region," Agricultural Water Management, Elsevier, vol. 96(1), pages 93-99, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gudeta Genemo & Habtamu Bedane & Eshetu Mekonen, 2023. "On-farm evaluation of drip irrigation system on coffee production in Western Oromia, Ethiopia," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 13(01), June.
    2. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    3. Srinivasan, M.S. & Measures, Richard & Muller, Carla & Neal, Mark & Rajanayaka, Channa & Shankar, Ude & Elley, Graham, 2021. "Comparing the water use metrics of just-in-case, just-in-time and justified irrigation strategies using a scenario-based tool," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Manzoor Qadir, 2018. "Policy Note: "Addressing Trade-offs to Promote Safely Managed Wastewater in Developing Countries"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 1-10, April.
    5. Ami Reznik & Ariel Dinar, 2022. "Local conditions and the economic feasibility of urban wastewater recycling in irrigated agriculture: Lessons from a stochastic regional analysis in California," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 2115-2130, December.
    6. Bengü Everest, 2021. "Farmers’ adaptation to climate-smart agriculture (CSA) in NW Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4215-4235, March.
    7. Gina Lopez & Hannah Beate Kolem & Amit Kumar Srivastava & Thomas Gaiser & Frank Ewert, 2019. "A Model-Based Estimation of Resource Use Efficiencies in Maize Production in Nigeria," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    8. Hassanli, Ali Morad & Ahmadirad, Shahram & Beecham, Simon, 2010. "Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 97(2), pages 357-362, February.
    9. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    10. Shuang Liu & Jianye Li & Xingyi Zhang, 2022. "Simulations of Soil Water and Heat Processes for No Tillage and Conventional Tillage Systems in Mollisols of China," Land, MDPI, vol. 11(3), pages 1-17, March.
    11. Jianping Yang & Chunping Tan & Shijin Wang & Shengxia Wang & Yuan Yang & Hongju Chen, 2015. "Drought Adaptation in the Ningxia Hui Autonomous Region, China: Actions, Planning, Pathways and Barriers," Sustainability, MDPI, vol. 7(11), pages 1-28, November.
    12. Liu, S. & Yang, J.Y. & Zhang, X.Y. & Drury, C.F. & Reynolds, W.D. & Hoogenboom, G., 2013. "Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China," Agricultural Water Management, Elsevier, vol. 123(C), pages 32-44.
    13. Morteza Feizi & Mohsen Jalali & Gianacrlo Renella, 2019. "Assessment of nutrient and heavy metal content and speciation in sewage sludge from different locations in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 657-675, February.
    14. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    15. Aydinsakir, Koksal & Buyuktas, Dursun & Dinç, Nazmi & Erdurmus, Cengiz & Bayram, Edip & Yegin, Arzu Bayir, 2021. "Yield and bioethanol productivity of sorghum under surface and subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Stepping, Katharina, 2016. "Urban sewage in Brazil: drivers of and obstacles to wastewater treatment and reuse. Governing the Water-Energy-Food Nexus Series," IDOS Discussion Papers 26/2016, German Institute of Development and Sustainability (IDOS).
    17. Hussein K. Okoro & Muyiwa M. Orosun & Faith A. Oriade & Tawakalit M. Momoh-Salami & Clement O. Ogunkunle & Adewale G. Adeniyi & Caliphs Zvinowanda & Jane C. Ngila, 2023. "Potentially Toxic Elements in Pharmaceutical Industrial Effluents: A Review on Risk Assessment, Treatment, and Management for Human Health," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    18. Ami Reznik & Ariel Dinar & Francesc Hernández-Sancho, 2019. "Treated Wastewater Reuse: An Efficient and Sustainable Solution for Water Resource Scarcity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(4), pages 1647-1685, December.
    19. Ashok J. Tamhankar & Cecilia Stålsby Lundborg, 2019. "Antimicrobials and Antimicrobial Resistance in the Environment and Its Remediation: A Global One Health Perspective," IJERPH, MDPI, vol. 16(23), pages 1-7, November.
    20. Jose Luis Ortega-Pozo & Francisco Javier Alcalá & José Manuel Poyatos & Jaime Martín-Pascual, 2022. "Wastewater Reuse for Irrigation Agriculture in Morocco: Influence of Regulation on Feasible Implementation," Land, MDPI, vol. 11(12), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:5:p:456-:d:96711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.