IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i11p1397-d119172.html
   My bibliography  Save this article

Climate Change and Schools: Environmental Hazards and Resiliency

Author

Listed:
  • Perry E. Sheffield

    (Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA)

  • Simone A. M. Uijttewaal

    (Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
    Health & Society, Wageningen University, 6708 PB Wageningen, The Netherlands)

  • James Stewart

    (Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA)

  • Maida P. Galvez

    (Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA)

Abstract

The changing climate is creating additional challenges in maintaining a healthy school environment in the United States (U.S.) where over 50 million people, mostly children, spend approximately a third of their waking hours. Chronic low prioritization of funds and resources to support environmental health in schools and lack of clear regulatory oversight in the U.S. undergird the new risks from climate change. We illustrate the extent of risk and the variation in vulnerability by geographic region, in the context of sparse systematically collected and comparable data particularly about school infrastructure. Additionally, we frame different resilience building initiatives, focusing on interventions that target root causes, or social determinants of health. Disaster response and recovery are also framed as resilience building efforts. Examples from U.S. Federal Region 2 (New Jersey, New York, Puerto Rico, and the U.S. Virgin Islands) and nationally are used to illustrate these concepts. We conclude that better surveillance, more research, and increased federal and state oversight of environmental factors in schools (specific to climate risks) is necessary, as exposures result in short- and long term negative health effects and climate change risks will increase over time.

Suggested Citation

  • Perry E. Sheffield & Simone A. M. Uijttewaal & James Stewart & Maida P. Galvez, 2017. "Climate Change and Schools: Environmental Hazards and Resiliency," IJERPH, MDPI, vol. 14(11), pages 1-17, November.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:11:p:1397-:d:119172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/11/1397/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/11/1397/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frieden, T.R., 2010. "A framework for public health action: The health impact pyramid," American Journal of Public Health, American Public Health Association, vol. 100(4), pages 590-595.
    2. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    3. Joffe, Marc & Martinez, Jesse, 2016. "Origins of the Puerto Rico Fiscal Crisis," Annals of Computational Economics, George Mason University, Mercatus Center, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    2. Walter Leal Filho & Muniyandi Balasubramanian & Roberto Ariel Abeldaño Zuñiga & Javier Sierra, 2023. "The Effects of Climate Change on Children’s Education Attainment," Sustainability, MDPI, vol. 15(7), pages 1-12, April.
    3. Kanas, Angelos & Molyneux, Philip & Zervopoulos, Panagiotis D., 2023. "Systemic risk and CO2 emissions in the U.S," Journal of Financial Stability, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    2. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    3. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    4. Chen Zhang & Xiaoming Li & Yu Liu & Shan Qiao & Liying Zhang & Yuejiao Zhou & Zhenzhu Tang & Zhiyong Shen & Yi Chen, 2016. "Stigma against People Living with HIV/AIDS in China: Does the Route of Infection Matter?," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    5. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    6. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    7. Bolte, Gabriele, 2018. "Epidemiologische Methoden und Erkenntnisse als eine Grundlage für Stadtplanung und gesundheitsfördernde Stadtentwicklung," Forschungsberichte der ARL: Aufsätze, in: Baumgart, Sabine & Köckler, Heike & Ritzinger, Anne & Rüdiger, Andrea (ed.), Planung für gesundheitsfördernde Städte, volume 8, pages 118-134, ARL – Akademie für Raumentwicklung in der Leibniz-Gemeinschaft.
    8. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    9. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    10. Yi Ge & Guangfei Yang & Yi Chen & Wen Dou, 2019. "Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    11. Irina Tumini & Paula Villagra-Islas & Geraldine Herrmann-Lunecke, 2017. "Evaluating reconstruction effects on urban resilience: a comparison between two Chilean tsunami-prone cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1363-1392, February.
    12. Maximiliano Oportus & Rodrigo Cienfuegos & Alejandro Urrutia & Rafael Aránguiz & Patricio A. Catalán & Matías A. Hube, 2020. "Ex post analysis of engineered tsunami mitigation measures in the town of Dichato, Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 367-406, August.
    13. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    14. Hung-Chih Hung & Ming-Chin Ho & Yi-Jie Chen & Chang-Yi Chian & Su-Ying Chen, 2013. "Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for the Hsinchu City, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 491-508, October.
    15. Aparna Kumari & Tim G. Frazier, 2021. "Evaluating social capital in emergency and disaster management and hazards plans," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 949-973, October.
    16. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    17. Jie Liu & Zhenwu Shi & Dan Wang, 2016. "Measuring and mapping the flood vulnerability based on land-use patterns: a case study of Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1545-1565, September.
    18. Vitor Baccarin Zanetti & Wilson Cabral De Sousa Junior & Débora M. De Freitas, 2016. "A Climate Change Vulnerability Index and Case Study in a Brazilian Coastal City," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    19. Sebastian del Busto & Inés Galindo & Juan Jesús Hernandez & Francisco Camarelles & Esther Nieto & Águeda Caballero & María Sandín Vázquez, 2019. "Creating a Collaborative Platform for the Development of Community Interventions to Prevent Non-Communicable Diseases," IJERPH, MDPI, vol. 16(5), pages 1-14, February.
    20. Ella Furness & Harry Nelson, 2016. "Are human values and community participation key to climate adaptation? The case of community forest organisations in British Columbia," Climatic Change, Springer, vol. 135(2), pages 243-259, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:11:p:1397-:d:119172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.