IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i6p584-d71949.html
   My bibliography  Save this article

Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa

Author

Listed:
  • Osadolor Ebhuoma

    (School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa)

  • Michael Gebreslasie

    (School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa)

Abstract

Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge SM databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic setting, the stage of malaria elimination continuum, the characteristics of the RS variables and the analytical approach, which in turn, would support the channeling of intervention resources sustainably.

Suggested Citation

  • Osadolor Ebhuoma & Michael Gebreslasie, 2016. "Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa," IJERPH, MDPI, vol. 13(6), pages 1-29, June.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:6:p:584-:d:71949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/6/584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/6/584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gosoniu, L. & Vounatsou, P. & Sogoba, N. & Maire, N. & Smith, T., 2009. "Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3358-3371, July.
    2. Robert M. De Jong & James Davidson, 2000. "Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices," Econometrica, Econometric Society, vol. 68(2), pages 407-424, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamal Jokar Arsanjani, 2017. "Remote Sensing, Crowd Sensing, and Geospatial Technologies for Public Health: An Editorial," IJERPH, MDPI, vol. 14(4), pages 1-3, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    2. Whang, Yoon-Jae & Linton, Oliver, 1999. "The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series," Journal of Econometrics, Elsevier, vol. 91(1), pages 1-42, July.
    3. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    4. Schnurr, Alexander & Fischer, Svenja, 2022. "Generalized ordinal patterns allowing for ties and their applications in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    5. Jithitikulchai, Theepakorn, 2023. "The effect of climate change and agricultural diversification on the total value of agricultural output of farm households in Sub-Saharan Africa," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 18(2), October.
    6. Peñaranda, Francisco & Sentana, Enrique, 2012. "Spanning tests in return and stochastic discount factor mean–variance frontiers: A unifying approach," Journal of Econometrics, Elsevier, vol. 170(2), pages 303-324.
    7. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    8. Goncalves, Silvia & de Jong, Robert, 2003. "Consistency of the stationary bootstrap under weak moment conditions," Economics Letters, Elsevier, vol. 81(2), pages 273-278, November.
    9. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    10. Zhijie Xiao & Luiz Renato Lima, 2007. "Testing Covariance Stationarity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 643-667.
    11. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    12. Oliver Linton & Michael Vogt, 2012. "Nonparametric estimation of a periodic sequence in the presence of a smooth trend," CeMMAP working papers 23/12, Institute for Fiscal Studies.
    13. Pelagatti, Matteo M. & Sen, Pranab K., 2013. "Rank tests for short memory stationarity," Journal of Econometrics, Elsevier, vol. 172(1), pages 90-105.
    14. J. Isaac Miller, 2010. "Cointegrating regressions with messy regressors and an application to mixed‐frequency series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 255-277, July.
    15. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    16. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    17. Yasutomo Murasawa, 2009. "Do coincident indicators have one-factor structure?," Empirical Economics, Springer, vol. 36(2), pages 339-365, May.
    18. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    19. Jonathan B. Hill & Artyom Shneyerov, 2009. "Are There Common Values in BC Timber Sales? A Tail-Index Nonparametric Test," Working Papers 09003, Concordia University, Department of Economics.
    20. Francisco Peñaranda & Enrique Sentana, 2015. "A Unifying Approach to the Empirical Evaluation of Asset Pricing Models," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 412-435, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:6:p:584-:d:71949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.