IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i9p11699-11717d55909.html
   My bibliography  Save this article

Assessment of River Habitat Quality in the Hai River Basin, Northern China

Author

Listed:
  • Yuekui Ding

    (State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China
    University of Chinese Academy of Science, Beijing 100049, China)

  • Baoqing Shan

    (State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China)

  • Yu Zhao

    (State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Science, Chinese Academy of Science, Beijing 100085, China
    University of Chinese Academy of Science, Beijing 100049, China)

Abstract

We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10 4 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10 4 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m 3 ); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

Suggested Citation

  • Yuekui Ding & Baoqing Shan & Yu Zhao, 2015. "Assessment of River Habitat Quality in the Hai River Basin, Northern China," IJERPH, MDPI, vol. 12(9), pages 1-19, September.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:9:p:11699-11717:d:55909
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/9/11699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/9/11699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Tao & Liu, Jingling & Chen, Qiuying, 2013. "Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China," Ecological Modelling, Elsevier, vol. 268(C), pages 37-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amin Hira & Muhammad Arif & Nowsherwan Zarif & Zarmina Gul & Xiangyue Liu & Yukun Cao, 2022. "Impacts of Stressors on Riparian Health Indicators in the Upper and Lower Indus River Basins in Pakistan," IJERPH, MDPI, vol. 19(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Xiaoguang & Liu, Jingling & Zhang, Lulu, 2015. "Ecological modeling of riparian vegetation under disturbances: A review," Ecological Modelling, Elsevier, vol. 318(C), pages 293-300.
    2. You, L. & Li, Y.P. & Huang, G.H. & Zhang, J.L., 2014. "Modeling regional ecosystem development under uncertainty – A case study for New Binhai District of Tianjin," Ecological Modelling, Elsevier, vol. 288(C), pages 127-142.
    3. Chunsheng Wu & Gaohuan Liu & Chong Huang & Qingsheng Liu & Xudong Guan, 2018. "Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta," IJERPH, MDPI, vol. 15(5), pages 1-14, April.
    4. Majid FathiZahraei & Govindan Marthandan & Murali Raman & Azita Asadi, 2015. "Reducing risks in crisis management by GIS adoption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 83-98, March.
    5. Yuan Wang & Cuiyun Xiang & Peng Zhao & Guozhu Mao & Huibin Du, 2016. "A bibliometric analysis for the research on river water quality assessment and simulation during 2000–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1333-1346, September.
    6. Shi, Xuan & Liu, Jingling & You, Xiaoguang & Bao, Kun & Meng, Bo & Chen, Bin, 2017. "Evaluation of river habitat integrity based on benthic macroinvertebrate-based multi-metric model," Ecological Modelling, Elsevier, vol. 353(C), pages 63-76.
    7. Kai Zhu & Yufeng Cheng & Weiye Zang & Quan Zhou & Youssef El Archi & Hossein Mousazadeh & Moaaz Kabil & Katalin Csobán & Lóránt Dénes Dávid, 2023. "Multiscenario Simulation of Land-Use Change in Hubei Province, China Based on the Markov-FLUS Model," Land, MDPI, vol. 12(4), pages 1-27, March.
    8. Wang, Zihan & Li, Jiaxin & Liu, Jing & Shuai, Chuanmin, 2020. "Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China," Energy Policy, Elsevier, vol. 137(C).
    9. Yongfei Fu & Yuyu Liu & Shiguo Xu & Zhenghe Xu, 2022. "Assessment of a Multifunctional River Using Fuzzy Comprehensive Evaluation Model in Xiaoqing River, Eastern China," IJERPH, MDPI, vol. 19(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:9:p:11699-11717:d:55909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.