IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i8p9298-9313d53899.html
   My bibliography  Save this article

Altered Expression of Genes in Signaling Pathways Regulating Proliferation of Hematopoietic Stem and Progenitor Cells in Mice with Subchronic Benzene Exposure

Author

Listed:
  • Rongli Sun

    (Key Laboratory of Environmental Medicine Engineering, Ministry of Education)

  • Juan Zhang

    (Key Laboratory of Environmental Medicine Engineering, Ministry of Education)

  • Mengzhen Xiong

    (Key Laboratory of Environmental Medicine Engineering, Ministry of Education)

  • Haiyan Wei

    (Key Laboratory of Environmental Medicine Engineering, Ministry of Education)

  • Kehong Tan

    (Key Laboratory of Environmental Medicine Engineering, Ministry of Education)

  • Lihong Yin

    (Key Laboratory of Environmental Medicine Engineering, Ministry of Education)

  • Yuepu Pu

    (Key Laboratory of Environmental Medicine Engineering, Ministry of Education)

Abstract

Leukemias and hematopoietic disorders induced by benzene may arise from the toxicity of benzene to hematopoietic stem or progenitor cells (HS/PCs). Since there is a latency period between initial benzene exposure and the development of leukemia, subsequent impact of benzene on HS/PCs are crucial for a deeper understanding of the carcinogenicity and hematotoxicity in post-exposure stage. This study aims to explore the effects of benzene on HS/PCs and gene-expression in Wnt, Notch and Hh signaling pathways in post-exposure stage. The C3H/He mice were injected subcutaneously with benzene (0, 150, 300 mg/kg/day) for three months and were monitored for another 10 months post-exposure. The body weights were monitored, the relative organ weights, blood parameters and bone marrow smears were examined. Frequency of lineage - sca-1 + c-kit + (LSK) cells, capability of colony forming and expression of genes in Wnt, Notch and Hedghog (Hh) signaling pathways were also analyzed. The colony formation of the progenitor cells for BFU-E, CFU-GEMM and CFU-GM was significantly decreased with increasing benzene exposure relative to controls, while no significant difference was observed in colonies for CFU-G and CFU-M. The mRNA level of cyclin D1 was increased and Notch 1 and p53 were decreased in LSK cells in mice exposed to benzene but with no statistical significance. These results suggest that subsequent toxic effects of benzene on LSK cells and gene expression in Wnt, Notch and Hh signaling pathways persist in post-exposure stage and may play roles in benzene-induced hematotoxicity.

Suggested Citation

  • Rongli Sun & Juan Zhang & Mengzhen Xiong & Haiyan Wei & Kehong Tan & Lihong Yin & Yuepu Pu, 2015. "Altered Expression of Genes in Signaling Pathways Regulating Proliferation of Hematopoietic Stem and Progenitor Cells in Mice with Subchronic Benzene Exposure," IJERPH, MDPI, vol. 12(8), pages 1-16, August.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:8:p:9298-9313:d:53899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/8/9298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/8/9298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tannishtha Reya & Andrew W. Duncan & Laurie Ailles & Jos Domen & David C. Scherer & Karl Willert & Lindsay Hintz & Roel Nusse & Irving L. Weissman, 2003. "A role for Wnt signalling in self-renewal of haematopoietic stem cells," Nature, Nature, vol. 423(6938), pages 409-414, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rongli Sun & Meng Cao & Juan Zhang & Wenwen Yang & Haiyan Wei & Xing Meng & Lihong Yin & Yuepu Pu, 2016. "Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice," IJERPH, MDPI, vol. 13(11), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Qi Chen & Hyun-Woo Jeong & Bong Ihn Koh & Emma C. Watson & Cong Xu & Martin Stehling & Bin Zhou & Ralf H. Adams, 2022. "A specialized bone marrow microenvironment for fetal haematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Wenxue Ma & Alejandro Gutierrez & Daniel J Goff & Ifat Geron & Anil Sadarangani & Christina A M Jamieson & Angela C Court & Alice Y Shih & Qingfei Jiang & Christina C Wu & Kang Li & Kristen M Smith & , 2012. "NOTCH1 Signaling Promotes Human T-Cell Acute Lymphoblastic Leukemia Initiating Cell Regeneration in Supportive Niches," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:8:p:9298-9313:d:53899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.