IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i1p1029-1043d44908.html
   My bibliography  Save this article

Ethanol and Acetic Acid Production from Carbon Monoxide in a Clostridium Strain in Batch and Continuous Gas-Fed Bioreactors

Author

Listed:
  • Haris Nalakath Abubackar

    (Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga 10, 15008 La Coruña, Spain)

  • María C. Veiga

    (Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga 10, 15008 La Coruña, Spain)

  • Christian Kennes

    (Chemical Engineering Laboratory, Faculty of Sciences, University of La Coruña, Rúa da Fraga 10, 15008 La Coruña, Spain)

Abstract

The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH 4 Cl , trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant ( p < 0.05) on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e. , EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e. , acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54.

Suggested Citation

  • Haris Nalakath Abubackar & María C. Veiga & Christian Kennes, 2015. "Ethanol and Acetic Acid Production from Carbon Monoxide in a Clostridium Strain in Batch and Continuous Gas-Fed Bioreactors," IJERPH, MDPI, vol. 12(1), pages 1-15, January.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:1:p:1029-1043:d:44908
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/1/1029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/1/1029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammadi, Maedeh & Najafpour, Ghasem D. & Younesi, Habibollah & Lahijani, Pooya & Uzir, Mohamad Hekarl & Mohamed, Abdul Rahman, 2011. "Bioconversion of synthesis gas to second generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4255-4273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azize Ayol & Luciana Peixoto & Tugba Keskin & Haris Nalakath Abubackar, 2021. "Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review," IJERPH, MDPI, vol. 18(21), pages 1-36, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    2. Abubackar, Haris Nalakath & Bengelsdorf, Frank R. & Dürre, Peter & Veiga, María C. & Kennes, Christian, 2016. "Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia," Applied Energy, Elsevier, vol. 169(C), pages 210-217.
    3. Tang, Yunheng & Huang, Yun & Gan, Wentian & Xia, Ao & Liao, Qiang & Zhu, Xianqing, 2021. "Ethanol production from gas fermentation: Rapid enrichment and domestication of bacterial community with continuous CO/CO2 gas," Renewable Energy, Elsevier, vol. 175(C), pages 337-344.
    4. Jack, Joshua & Lo, Jonathan & Donohue, Bryon & Maness, Pin-Ching & Jason Ren, Zhiyong, 2020. "High rate CO2 valorization to organics via CO mediated silica nanoparticle enhanced fermentation," Applied Energy, Elsevier, vol. 279(C).
    5. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Awasthi, Sanjeev Kumar & Liu, Tao & Duan, Yumin & Jain, Archana & Sindhu, Raveendran & Binod, Parameswaran & Pandey, 2021. "Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Avelino Gonçalves, Fabiano & dos Santos, Everaldo Silvino & de Macedo, Gorete Ribeiro, 2015. "Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: A proposal to utilization of microdistillery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1287-1303.
    7. Ko, Chun-Han & Chaiprapat, Sumate & Kim, Lee-Hyung & Hadi, Pejman & Hsu, Shu-Chien & Leu, Shao-Yuan, 2017. "Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1051-1062.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:1:p:1029-1043:d:44908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.