IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v11y2014i9p8839-8866d39705.html
   My bibliography  Save this article

Alternative Zoning Scenarios for Regional Sustainable Land Use Controls in China: A Knowledge-Based Multiobjective Optimisation Model

Author

Listed:
  • Yin Xia

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Xiangyang Municipal Bureau of Land and Resources, 13 Xiangcheng Street, Xiangyang 441100, China)

  • Dianfeng Liu

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Yaolin Liu

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Jianhua He

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Xiaofeng Hong

    (Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, 23 Huangpu Road, Wuhan 430010, China)

Abstract

Alternative land use zoning scenarios provide guidance for sustainable land use controls. This study focused on an ecologically vulnerable catchment on the Loess Plateau in China, proposed a novel land use zoning model, and generated alternative zoning solutions to satisfy the various requirements of land use stakeholders and managers. This model combined multiple zoning objectives, i.e. , maximum zoning suitability, maximum planning compatibility and maximum spatial compactness, with land use constraints by using goal programming technique, and employed a modified simulated annealing algorithm to search for the optimal zoning solutions. The land use zoning knowledge was incorporated into the initialisation operator and neighbourhood selection strategy of the simulated annealing algorithm to improve its efficiency. The case study indicates that the model is both effective and robust. Five optimal zoning scenarios of the study area were helpful for satisfying the requirements of land use controls in loess hilly regions, e.g., land use intensification, agricultural protection and environmental conservation.

Suggested Citation

  • Yin Xia & Dianfeng Liu & Yaolin Liu & Jianhua He & Xiaofeng Hong, 2014. "Alternative Zoning Scenarios for Regional Sustainable Land Use Controls in China: A Knowledge-Based Multiobjective Optimisation Model," IJERPH, MDPI, vol. 11(9), pages 1-28, August.
  • Handle: RePEc:gam:jijerp:v:11:y:2014:i:9:p:8839-8866:d:39705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/11/9/8839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/11/9/8839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lahdelma, Risto & Miettinen, Kaisa & Salminen, Pekka, 2005. "Reference point approach for multiple decision makers," European Journal of Operational Research, Elsevier, vol. 164(3), pages 785-791, August.
    2. Biswas, Animesh & Pal, Bijay Baran, 2005. "Application of fuzzy goal programming technique to land use planning in agricultural system," Omega, Elsevier, vol. 33(5), pages 391-398, October.
    3. Yaolin Liu & Hua Wang & Yingli Ji & Zhongqiu Liu & Xiang Zhao, 2012. "Land Use Zoning at the County Level Based on a Multi-Objective Particle Swarm Optimization Algorithm: A Case Study from Yicheng, China," IJERPH, MDPI, vol. 9(8), pages 1-26, August.
    4. Federica Ricca & Andrea Scozzari & Bruno Simeone, 2013. "Political Districting: from classical models to recent approaches," Annals of Operations Research, Springer, vol. 204(1), pages 271-299, April.
    5. S. W. Hess & J. B. Weaver & H. J. Siegfeldt & J. N. Whelan & P. A. Zitlau, 1965. "Nonpartisan Political Redistricting by Computer," Operations Research, INFORMS, vol. 13(6), pages 998-1006, December.
    6. Xu, Xuegong & Hou, Lisheng & Lin, Huiping & Liu, Wenzheng, 2006. "Zoning of sustainable agricultural development in China," Agricultural Systems, Elsevier, vol. 87(1), pages 38-62, January.
    7. F Caro & T Shirabe & M Guignard & A Weintraub, 2004. "School redistricting: embedding GIS tools with integer programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(8), pages 836-849, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junxiao Wang & Xiaorui Wang & Shenglu Zhou & Shaohua Wu & Yan Zhu & Chunfeng Lu, 2016. "Optimization of Sample Points for Monitoring Arable Land Quality by Simulated Annealing while Considering Spatial Variations," IJERPH, MDPI, vol. 13(10), pages 1-12, September.
    2. Liping Zhang & Shiwen Zhang & Yajie Huang & Meng Cao & Yuanfang Huang & Hongyan Zhang, 2016. "Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model," IJERPH, MDPI, vol. 13(4), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    2. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2023. "Approximation schemes for districting problems with probabilistic constraints," European Journal of Operational Research, Elsevier, vol. 307(1), pages 233-248.
    3. Antonio Diglio & Stefan Nickel & Francisco Saldanha-da-Gama, 2020. "Towards a stochastic programming modeling framework for districting," Annals of Operations Research, Springer, vol. 292(1), pages 249-285, September.
    4. Sebastián Moreno & Jordi Pereira & Wilfredo Yushimito, 2020. "A hybrid K-means and integer programming method for commercial territory design: a case study in meat distribution," Annals of Operations Research, Springer, vol. 286(1), pages 87-117, March.
    5. Verónica Arredondo & Miguel Martínez-Panero & Teresa Peña & Federica Ricca, 2021. "Mathematical political districting taking care of minority groups," Annals of Operations Research, Springer, vol. 305(1), pages 375-402, October.
    6. Swamy, Rahul & King, Douglas M. & Ludden, Ian G. & Dobbs, Kiera W. & Jacobson, Sheldon H., 2024. "A practical optimization framework for political redistricting: A case study in Arizona," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    7. Sommer Gentry & Eric Chow & Allan Massie & Dorry Segev, 2015. "Gerrymandering for Justice: Redistricting U.S. Liver Allocation," Interfaces, INFORMS, vol. 45(5), pages 462-480, October.
    8. Djordje Dugošija & Aleksandar Savić & Zoran Maksimović, 2020. "A new integer linear programming formulation for the problem of political districting," Annals of Operations Research, Springer, vol. 288(1), pages 247-263, May.
    9. Diglio, Antonio & Peiró, Juanjo & Piccolo, Carmela & Saldanha-da-Gama, Francisco, 2021. "Solutions for districting problems with chance-constrained balancing requirements," Omega, Elsevier, vol. 103(C).
    10. Benadè, Gerdus & Ho-Nguyen, Nam & Hooker, J.N., 2022. "Political districting without geography," Operations Research Perspectives, Elsevier, vol. 9(C).
    11. Christian Haas & Lee Hachadoorian & Steven O Kimbrough & Peter Miller & Frederic Murphy, 2020. "Seed-Fill-Shift-Repair: A redistricting heuristic for civic deliberation," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-34, September.
    12. Anderson Kenji Hirose & Cassius Tadeu Scarpin & José Eduardo Pécora Junior, 2020. "Goal programming approach for political districting in Santa Catarina State: Brazil," Annals of Operations Research, Springer, vol. 287(1), pages 209-232, April.
    13. Shubham Akshat & Sommer E. Gentry & S. Raghavan, 2024. "Heterogeneous donor circles for fair liver transplant allocation," Health Care Management Science, Springer, vol. 27(1), pages 20-45, March.
    14. Eduardo Álvarez-Miranda & Camilo Campos-Valdés & Maurcio Morales Quiroga & Matías Moreno-Faguett & Jordi Pereira, 2020. "A Multi-Criteria Pen for Drawing Fair Districts: When Democratic and Demographic Fairness Matter," Mathematics, MDPI, vol. 8(9), pages 1-26, August.
    15. Sandoval, M. Gabriela & Álvarez-Miranda, Eduardo & Pereira, Jordi & Ríos-Mercado, Roger Z. & Díaz, Juan A., 2022. "A novel districting design approach for on-time last-mile delivery: An application on an express postal company," Omega, Elsevier, vol. 113(C).
    16. Brian Lunday & Hanif Sherali & Kevin Lunday, 2012. "The coastal seaspace patrol sector design and allocation problem," Computational Management Science, Springer, vol. 9(4), pages 483-514, November.
    17. Podinovski, Vladislav V., 2020. "Maximum likelihood solutions for multicriterial choice problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 299-308.
    18. Lodree Jr., Emmett J. & Uzochukwu, Benedict M., 2008. "Production planning for a deteriorating item with stochastic demand and consumer choice," International Journal of Production Economics, Elsevier, vol. 116(2), pages 219-232, December.
    19. Amy Cohn & Michael Magazine & George Polak, 2009. "Rank‐Cluster‐and‐Prune: An algorithm for generating clusters in complex set partitioning problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 215-225, April.
    20. Augustine Esogbue & Qiang Song & Donovan Young, 2006. "Non-Euler–Lagrangian Pareto-optimality Conditions for Dynamic Multiple Criterion Decision Problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 525-542, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:11:y:2014:i:9:p:8839-8866:d:39705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.