IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v11y2014i2p1647-1660d32676.html
   My bibliography  Save this article

Associations of Serum Retinol, α-Tocopherol, and γ-Tocopherol with Biomarkers among Healthy Japanese Men

Author

Listed:
  • Yu Zou

    (Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan)

  • Da-Hong Wang

    (Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan)

  • Noriko Sakano

    (Department of Gerontology Research, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan)

  • Yoshie Sato

    (Graduate School of Health Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan)

  • Suketaka Iwanaga

    (Department of Public Health, Faculty of Medicine, Kyoto University, Yoshida-Konoye-cho Sakyo-ku, Kyoto 606-8501, Japan)

  • Kazuhisa Taketa

    (Geriatric Health Service Facility, Niwanosato Home, Mihara, Hiroshima 729-1321, Japan)

  • Masayuki Kubo

    (Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan)

  • Kei Takemoto

    (Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan)

  • Chie Masatomi

    (Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan)

  • Kiyomi Inoue

    (Public Health Care Nursing, Department of Nursing, Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Otani-cho, Kobe 653-0838, Japan)

  • Keiki Ogino

    (Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan)

Abstract

Retinol, α-tocopherol, and γ-tocopherol are fat-soluble vitamins acting as antioxidants via the prevention of lipid oxidation. Little is known about circulatory levels in healthy individuals. The present cross-sectional study aimed at elucidating the relationship between these antioxidants and clinical biomarkers in 206 male (median age 41 years, range 23–67) employees from companies located in the Okayama Prefecture, Japan. Subjects younger than 40 years (n = 94) showed a positive association of the frequency of alcohol consumption with the circulating retinol (β = 0.344, p = 0.001) and γ-tocopherol levels (β = 0.219, p = 0.041), and an inverse association of fast insulin with serum retinol (β = −0.301, p = 0.009). In participants older than 40 years (n = 112) we found that an inverse association of HOMA-R with serum retinol (β = −0.262, p = 0.021), α-tocopherol (β = −0.236, p = 0.035), and γ-tocopherol levels (β = −0.224, p = 0.052); and cigarette smoking was inversely associated with the levels of serum α-tocopherol (β = −0.286, p = 0.008) and γ-tocopherol (β = −0.229, p = 0.040). We further found negative relationships between serum ferritin and the retinol (β = −0.211, p = 0.032) and α-tocopherol levels (β = −0.223, p = 0.022) in men over 40 years of age. The present study suggests that the circulatory levels of antioxidant vitamins may modulate the action of insulin and that higher levels of iron might decrease the levels of antioxidant vitamins in the blood.

Suggested Citation

  • Yu Zou & Da-Hong Wang & Noriko Sakano & Yoshie Sato & Suketaka Iwanaga & Kazuhisa Taketa & Masayuki Kubo & Kei Takemoto & Chie Masatomi & Kiyomi Inoue & Keiki Ogino, 2014. "Associations of Serum Retinol, α-Tocopherol, and γ-Tocopherol with Biomarkers among Healthy Japanese Men," IJERPH, MDPI, vol. 11(2), pages 1-14, January.
  • Handle: RePEc:gam:jijerp:v:11:y:2014:i:2:p:1647-1660:d:32676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/11/2/1647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/11/2/1647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Houstis & Evan D. Rosen & Eric S. Lander, 2006. "Reactive oxygen species have a causal role in multiple forms of insulin resistance," Nature, Nature, vol. 440(7086), pages 944-948, April.
    2. Qin Yang & Timothy E. Graham & Nimesh Mody & Frederic Preitner & Odile D. Peroni & Janice M. Zabolotny & Ko Kotani & Loredana Quadro & Barbara B. Kahn, 2005. "Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes," Nature, Nature, vol. 436(7049), pages 356-362, July.
    3. Dinesh Talwar & Alex McConnachie & Paul Welsh & Mark Upton & Denis O'Reilly & George Davey Smith & Graham Watt & Naveed Sattar, 2010. "Which Circulating Antioxidant Vitamins Are Confounded by Socioeconomic Deprivation? The MIDSPAN Family Study," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyo-Bum Kwak & Tracey L. Woodlief & Thomas D. Green & Julie H. Cox & Robert C. Hickner & P. Darrell Neufer & Ronald N. Cortright, 2019. "Overexpression of Long-Chain Acyl-CoA Synthetase 5 Increases Fatty Acid Oxidation and Free Radical Formation While Attenuating Insulin Signaling in Primary Human Skeletal Myotubes," IJERPH, MDPI, vol. 16(7), pages 1-15, March.
    2. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    3. Surapon Tangvarasittichai, 2018. "Iron Homeostasis and Diabetes Risk," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 7(4), pages 1-11, July.
    4. Dustin W. Davis & Jeannette Crew & Petar Planinic & James M. Alexander & Arpita Basu, 2020. "Associations of Dietary Bioactive Compounds with Maternal Adiposity and Inflammation in Gestational Diabetes: An Update on Observational and Clinical Studies," IJERPH, MDPI, vol. 17(20), pages 1-21, October.
    5. Daniel J. Fazakerley & Julian van Gerwen & Kristen C. Cooke & Xiaowen Duan & Elise J. Needham & Alexis Díaz-Vegas & Søren Madsen & Dougall M. Norris & Amber S. Shun-Shion & James R. Krycer & James G. , 2023. "Phosphoproteomics reveals rewiring of the insulin signaling network and multi-nodal defects in insulin resistance," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Demetrios Petrakis & Loukia Vassilopoulou & Charalampos Mamoulakis & Christos Psycharakis & Aliki Anifantaki & Stavros Sifakis & Anca Oana Docea & John Tsiaoussis & Antonios Makrigiannakis & Aristides, 2017. "Endocrine Disruptors Leading to Obesity and Related Diseases," IJERPH, MDPI, vol. 14(10), pages 1-18, October.
    7. Natasha Chandiramani & Xianhong Wang & Marta Margeta, 2011. "Molecular Basis for Vulnerability to Mitochondrial and Oxidative Stress in a Neuroendocrine CRI-G1 Cell Line," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-18, January.
    8. Konxhe Kulaj & Alexandra Harger & Michaela Bauer & Özüm S. Caliskan & Tilak Kumar Gupta & Dapi Menglin Chiang & Edward Milbank & Josefine Reber & Angelos Karlas & Petra Kotzbeck & David N. Sailer & Fr, 2023. "Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Jonathan M. Dreyfuss & Yixing Yuchi & Xuehong Dong & Vissarion Efthymiou & Hui Pan & Donald C. Simonson & Ashley Vernon & Florencia Halperin & Pratik Aryal & Anish Konkar & Yinong Sebastian & Brandon , 2021. "High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Tina Rönn & Jones K. Ofori & Alexander Perfilyev & Alexander Hamilton & Karolina Pircs & Fabian Eichelmann & Sonia Garcia-Calzon & Alexandros Karagiannopoulos & Hans Stenlund & Anna Wendt & Petr Volko, 2023. "Genes with epigenetic alterations in human pancreatic islets impact mitochondrial function, insulin secretion, and type 2 diabetes," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    11. Lidwina Priliani & Sukma Oktavianthi & Elizabeth L Prado & Safarina G Malik & Anuraj H Shankar, 2020. "Maternal biomarker patterns for metabolism and inflammation in pregnancy are influenced by multiple micronutrient supplementation and associated with child biomarker patterns and nutritional status at," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    12. Surapon Tangvarasittichai, 2018. "Iron Homeostasis and Diabetes Risk," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 7(4), pages 79-88, July.
    13. Federica Catalano & Francesca De Vito & Velia Cassano & Teresa Vanessa Fiorentino & Angela Sciacqua & Marta Letizia Hribal, 2022. "Circadian Clock Desynchronization and Insulin Resistance," IJERPH, MDPI, vol. 20(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:11:y:2014:i:2:p:1647-1660:d:32676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.