IDEAS home Printed from https://ideas.repec.org/a/gam/jgeogr/v5y2024i1p1-d1557338.html
   My bibliography  Save this article

Enhanced Forecasting of Groundwater Level Incorporating an Exogenous Variable: Evaluating Conventional Multivariate Time Series and Artificial Neural Network Models

Author

Listed:
  • Md Abrarul Hoque

    (Department of Civil Engineering, European University of Bangladesh, 2/4 Gabtoli, Mirpur, Dhaka 1216, Bangladesh)

  • Asib Ahmmed Apon

    (Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Md Arafat Hassan

    (Department of Geography, Rutgers University, New Brunswick, NJ 08901, USA)

  • Sajal Kumar Adhikary

    (Department of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh)

  • Md Ariful Islam

    (Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588, USA)

Abstract

Continuous and uncontrolled extraction of groundwater often creates tremendous pressure on groundwater levels (GWLs). As a part of sustainable planning and effective management of water resources, it is crucial to assess the existing and forecasted GWL conditions. In this study, an attempt was made to model and forecast GWL using artificial neural networks (ANNs) and multivariate time series models. Autoregressive integrated moving average (ARIMA) and ARIMA models incorporating exogenous variables (ARIMAX) were adopted as the time series models. GWL data from five monitoring wells from the study area of the Kushtia District in Bangladesh were used to demonstrate the modeling exercise. Rainfall (RF) was taken as the exogenous variable to explore whether its inclusion enhanced the performance of GWL forecasting using the developed models. It was evident from the results that the multivariate ARIMAX model (with the sum of squared errors, SSE, of 15.143) performed better than the univariate ARIMA model with an SSE of 16.585 for GWL forecasting. This demonstrates the fact that the multivariate time series models generated enhanced forecasting of GWL compared to the univariate time series models. When comparing the models, it was found that the ANN-based model outperformed the time series models with enhanced forecasting accuracy (SSE of 9.894). The results also exhibit a significant correlation coefficient (R) of 0.995 (model ANN 6-8-1) for the existing and predicted data. The current study conclusively proves the superiority of ANN over the time series models for the enhanced forecasting of GWL in the study area.

Suggested Citation

  • Md Abrarul Hoque & Asib Ahmmed Apon & Md Arafat Hassan & Sajal Kumar Adhikary & Md Ariful Islam, 2024. "Enhanced Forecasting of Groundwater Level Incorporating an Exogenous Variable: Evaluating Conventional Multivariate Time Series and Artificial Neural Network Models," Geographies, MDPI, vol. 5(1), pages 1-19, December.
  • Handle: RePEc:gam:jgeogr:v:5:y:2024:i:1:p:1-:d:1557338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-7086/5/1/1/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-7086/5/1/1/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdus Samad Azad & Rajalingam Sokkalingam & Hanita Daud & Sajal Kumar Adhikary & Hifsa Khurshid & Siti Nur Athirah Mazlan & Muhammad Babar Ali Rabbani, 2022. "Water Level Prediction through Hybrid SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir Case Study," Sustainability, MDPI, vol. 14(3), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martín Alfredo Legarreta-González & César A. Meza-Herrera & Rafael Rodríguez-Martínez & Darithsa Loya-González & Carlos Servando Chávez-Tiznado & Viridiana Contreras-Villarreal & Francisco Gerardo Vél, 2024. "Selecting a Time-Series Model to Predict Drinking Water Extraction in a Semi-Arid Region in Chihuahua, Mexico," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
    2. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    3. Adisa Hammed Akinsoji & Bashir Adelodun & Qudus Adeyi & Rahmon Abiodun Salau & Golden Odey & Kyung Sook Choi, 2024. "Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4735-4761, September.
    4. Wenying Zeng & Songbai Song & Yan Kang & Xuan Gao & Rui Ma, 2022. "Response of Runoff to Meteorological Factors Based on Time-Varying Parameter Vector Autoregressive Model with Stochastic Volatility in Arid and Semi-Arid Area of Weihe River Basin," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    5. Jeongho Han & Joo Hyun Bae, 2024. "Developing an Hourly Water Level Prediction Model for Small- and Medium-Sized Agricultural Reservoirs Using AutoML: Case Study of Baekhak Reservoir, South Korea," Agriculture, MDPI, vol. 15(1), pages 1-21, December.
    6. Serkan Ozdemir & Sevgi Ozkan Yildirim, 2023. "Prediction of Water Level in Lakes by RNN-Based Deep Learning Algorithms to Preserve Sustainability in Changing Climate and Relationship to Microcystin," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    7. Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgeogr:v:5:y:2024:i:1:p:1-:d:1557338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.