IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v3y2012i1p30-40d16484.html
   My bibliography  Save this article

Coordination, Differentiation and Fairness in a Population of Cooperating Agents

Author

Listed:
  • Anne-Ly Do

    (Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden 01187, Germany)

  • Lars Rudolf

    (Department of Engineering Mathematics, University of Bristol, Merchant Venturers Building, Bristol BS8 1TR, UK)

  • Thilo Gross

    (Department of Engineering Mathematics, University of Bristol, Merchant Venturers Building, Bristol BS8 1TR, UK)

Abstract

In a recent paper, we analyzed the self-assembly of a complex cooperation network. The network was shown to approach a state where every agent invests the same amount of resources. Nevertheless, highly-connected agents arise that extract extraordinarily high payoffs while contributing comparably little to any of their cooperations. Here, we investigate a variant of the model, in which highly-connected agents have access to additional resources. We study analytically and numerically whether these resources are invested in existing collaborations, leading to a fairer load distribution, or in establishing new collaborations, leading to an even less fair distribution of loads and payoffs.

Suggested Citation

  • Anne-Ly Do & Lars Rudolf & Thilo Gross, 2012. "Coordination, Differentiation and Fairness in a Population of Cooperating Agents," Games, MDPI, vol. 3(1), pages 1-11, March.
  • Handle: RePEc:gam:jgames:v:3:y:2012:i:1:p:30-40:d:16484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/3/1/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/3/1/30/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    2. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    3. Ernst Fehr & Urs Fischbacher, 2003. "The nature of human altruism," Nature, Nature, vol. 425(6960), pages 785-791, October.
    4. Jorge M Pacheco & Flávio L Pinheiro & Francisco C Santos, 2009. "Population Structure Induces a Symmetry Breaking Favoring the Emergence of Cooperation," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-7, December.
    5. M. G. Zimmermann & V. M. Eguíluz & M. San Miguel & A. Spadaro, 2000. "Cooperation in an Adaptive Network," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 283-297.
    6. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    7. Acharya, Amitav, 2011. "Asian Regional Institutions and the Possibilities for Socializing the Behavior of States," Working Papers on Regional Economic Integration 82, Asian Development Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    2. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    3. Hong, Lijun & Geng, Yini & Du, Chunpeng & Shen, Chen & Shi, Lei, 2021. "Average payoff-driven or imitation? A new evidence from evolutionary game theory in finite populations," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Yongkui Liu & Xiaojie Chen & Lin Zhang & Long Wang & Matjaž Perc, 2012. "Win-Stay-Lose-Learn Promotes Cooperation in the Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    5. Chen, Wei & Zhu, Qianlong & Wu, Te, 2023. "Unfairness promotes the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    6. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    7. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    8. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    9. Yu, Jianyong & Jiang, J.C. & Xiang, Leijun, 2017. "Group-based strategy diffusion in multiplex networks with weighted values," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 148-156.
    10. Xinrong Yang & Zhenping Geng & Haitao Li, 2023. "Matrix-Based Method for the Analysis and Control of Networked Evolutionary Games: A Survey," Games, MDPI, vol. 14(2), pages 1-13, February.
    11. Chen, Wei & Wu, Te & Li, Zhiwu & Wang, Long, 2016. "Friendship-based partner switching promotes cooperation in heterogeneous populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 192-199.
    12. Lv, Ran & Qian, Jia-Li & Hao, Qing-Yi & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2024. "The impact of reputation-based heterogeneous evaluation and learning on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Zhang, Wei, 2024. "Network reciprocity and inequality: The role of additional mixing links among social groups," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    14. Kyle Weishaar & Igor V. Erovenko, 2022. "The Evolution of Cooperation in Two-Dimensional Mobile Populations with Random and Strategic Dispersal," Games, MDPI, vol. 13(3), pages 1-16, May.
    15. Dirk Helbing & Attila Szolnoki & Matjaž Perc & György Szabó, 2010. "Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-9, April.
    16. Wes Maciejewski & Feng Fu & Christoph Hauert, 2014. "Evolutionary Game Dynamics in Populations with Heterogenous Structures," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-16, April.
    17. Li, Yixiao & Wang, Yi & Sheng, Jichuan, 2017. "The evolution of cooperation on geographical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 1-10.
    18. Huang, Keke & Zheng, Xiaoping & Su, Yunpeng, 2015. "Effect of heterogeneous sub-populations on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 681-687.
    19. Wang, Lu & Ye, Shun-Qiang & Cheong, Kang Hao & Bao, Wei & Xie, Neng-gang, 2018. "The role of emotions in spatial prisoner’s dilemma game with voluntary participation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1396-1407.
    20. Liu, Penghui & Liu, Jing, 2017. "Robustness of coevolution in resolving prisoner’s dilemma games on interdependent networks subject to attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 362-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:3:y:2012:i:1:p:30-40:d:16484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.