IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v12y2021i3p60-d604236.html
   My bibliography  Save this article

Consensus towards Partially Cooperative Strategies in Self-Regulated Evolutionary Games on Networks

Author

Listed:
  • Dario Madeo

    (Department of Information Engineering and Mathematics, Via Roma, 56, 53100 Siena, Italy
    The authors contributed equally to this work.)

  • Chiara Mocenni

    (Department of Information Engineering and Mathematics, Via Roma, 56, 53100 Siena, Italy
    The authors contributed equally to this work.)

Abstract

Cooperation is widely recognized to be fundamental for the well-balanced development of human societies. Several different approaches have been proposed to explain the emergence of cooperation in populations of individuals playing the Prisoner’s Dilemma game, characterized by two concurrent natural mechanisms: the temptation to defect and the fear to be betrayed by others. Few results are available for analyzing situations where only the temptation to defect (Chicken game) or the fear to be betrayed (Stag-Hunt game) is present. In this paper, we analyze the emergence of full and partial cooperation for these classes of games. We find the conditions for which these Nash equilibria are asymptotically stable, and we show that the partial one is also globally stable. Furthermore, in the Chicken and Stag-Hunt games, partial cooperation has been found to be more rewarding than the full one of the Prisoner’s Dilemma game. This result highlights the importance of such games for understanding and sustaining different levels of cooperation in social networks.

Suggested Citation

  • Dario Madeo & Chiara Mocenni, 2021. "Consensus towards Partially Cooperative Strategies in Self-Regulated Evolutionary Games on Networks," Games, MDPI, vol. 12(3), pages 1-16, July.
  • Handle: RePEc:gam:jgames:v:12:y:2021:i:3:p:60-:d:604236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/12/3/60/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/12/3/60/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geraldine Guarin & J. Jobu Babin, 2021. "Collaboration and Gender Focality in Stag Hunt Bargaining," Games, MDPI, vol. 12(2), pages 1-7, May.
    2. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.
    3. Francisco C. Santos & Marta D. Santos & Jorge M. Pacheco, 2008. "Social diversity promotes the emergence of cooperation in public goods games," Nature, Nature, vol. 454(7201), pages 213-216, July.
    4. Rand, David Gertler & Dreber, Anna & Fudenberg, Drew & Ellingson, Tore & Nowak, Martin A., 2009. "Positive Interactions Promote Public Cooperation," Scholarly Articles 3804483, Harvard University Department of Economics.
    5. Ernst Fehr & Simon Gächter, 2002. "Altruistic punishment in humans," Nature, Nature, vol. 415(6868), pages 137-140, January.
    6. repec:nas:journl:v:115:y:2018:p:30-35 is not listed on IDEAS
    7. Ernst Fehr & Urs Fischbacher, 2004. "Social norms and human cooperation," Macroeconomics 0409026, University Library of Munich, Germany.
    8. Hisashi Ohtsuki & Christoph Hauert & Erez Lieberman & Martin A. Nowak, 2006. "A simple rule for the evolution of cooperation on graphs and social networks," Nature, Nature, vol. 441(7092), pages 502-505, May.
    9. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    10. Swami Iyer & Timothy Killingback, 2020. "Evolution of Cooperation in Social Dilemmas with Assortative Interactions," Games, MDPI, vol. 11(4), pages 1-31, September.
    11. Dirk Helbing & Anders Johansson, 2010. "Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-15, October.
    12. Sam P Brown & François Taddei, 2007. "The Durability of Public Goods Changes the Dynamics and Nature of Social Dilemmas," PLOS ONE, Public Library of Science, vol. 2(7), pages 1-7, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dario Madeo & Chiara Mocenni, 2018. "Self-regulation promotes cooperation in social networks," Papers 1807.07848, arXiv.org.
    2. Wang, Jianwei & Xu, Wenshu & Yu, Fengyuan & He, Jialu & Chen, Wei & Dai, Wenhui, 2024. "Evolution of cooperation under corrupt institutions," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    3. Mohammad Salahshour, 2021. "Freedom to choose between public resources promotes cooperation," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-15, February.
    4. Quan, Ji & Yu, Junyu & Li, Xia & Wang, Xianjia, 2023. "Conditional switching between social excluders and loners promotes cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. José M Galán & Maciej M Łatek & Seyed M Mussavi Rizi, 2011. "Axelrod's Metanorm Games on Networks," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-11, May.
    6. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    7. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Paton Pak Chun Yam & Gary Ting Tat Ng & Wing Tung Au & Lin Tao & Su Lu & Hildie Leung & Jane M Y Fung, 2018. "The effect of subgroup homogeneity of efficacy on contribution in public good dilemmas," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-18, July.
    9. Dimitris Iliopoulos & Arend Hintze & Christoph Adami, 2010. "Critical Dynamics in the Evolution of Stochastic Strategies for the Iterated Prisoner's Dilemma," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-8, October.
    10. Wang, Mie & Kang, HongWei & Shen, Yong & Sun, XingPing & Chen, QingYi, 2021. "The role of alliance cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2017. "Publishing the donation list incompletely promotes the emergence of cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 48-56.
    12. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    13. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    14. Xiaofeng Wang, 2021. "Costly Participation and The Evolution of Cooperation in the Repeated Public Goods Game," Dynamic Games and Applications, Springer, vol. 11(1), pages 161-183, March.
    15. E Lance Howe & James J Murphy & Drew Gerkey & Colin Thor West, 2016. "Indirect Reciprocity, Resource Sharing, and Environmental Risk: Evidence from Field Experiments in Siberia," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-17, July.
    16. Min, Yong & Du, Yuchen & Jin, Cheng, 2018. "The effect of link rewiring on a coevolutionary common pool resource game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 935-944.
    17. Qi Su & Lei Zhou & Long Wang, 2019. "Evolutionary multiplayer games on graphs with edge diversity," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-22, April.
    18. Flávio L Pinheiro & Jorge M Pacheco & Francisco C Santos, 2012. "From Local to Global Dilemmas in Social Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    19. Kroumi, Dhaker & Lessard, Sabin, 2015. "Evolution of cooperation in a multidimensional phenotype space," Theoretical Population Biology, Elsevier, vol. 102(C), pages 60-75.
    20. Matthijs van Veelen & Benjamin Allen & Moshe Hoffman & Burton Simon & Carl Veller, 2016. "Inclusive Fitness," Tinbergen Institute Discussion Papers 16-055/I, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:12:y:2021:i:3:p:60-:d:604236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.