IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v10y2019i1p6-d199803.html
   My bibliography  Save this article

On Adaptive Heuristics that Converge to Correlated Equilibrium

Author

Listed:
  • Ayan Bhattacharya

    (Bert W. Wasserman Department of Economics and Finance, Zicklin School of Business, Baruch College, The City University of New York, New York, NY 10010, USA)

Abstract

I study the path properties of adaptive heuristics that mimic the natural dynamics of play in a game and converge to the set of correlated equilibria. Despite their apparent differences, I show that these heuristics have an abstract representation as a sequence of probability distributions that satisfy a number of common properties. These properties arise due to the topological structure of the set of correlated equilibria. The characterizations that I obtain have useful applications in the study of the convergence of the heuristics.

Suggested Citation

  • Ayan Bhattacharya, 2019. "On Adaptive Heuristics that Converge to Correlated Equilibrium," Games, MDPI, vol. 10(1), pages 1-11, January.
  • Handle: RePEc:gam:jgames:v:10:y:2019:i:1:p:6-:d:199803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/10/1/6/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/10/1/6/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Hart, Sergiu & Nisan, Noam, 2018. "The query complexity of correlated equilibria," Games and Economic Behavior, Elsevier, vol. 108(C), pages 401-410.
    3. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    4. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    5. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    6. Sergiu Hart & Andreu Mas-Colell, 2013. "A General Class Of Adaptive Strategies," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 3, pages 47-76, World Scientific Publishing Co. Pte. Ltd..
    7. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    8. Foster, Dean P. & Vohra, Rakesh V., 1997. "Calibrated Learning and Correlated Equilibrium," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 40-55, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burkhard C. Schipper, 2022. "Strategic Teaching and Learning in Games," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 321-352, August.
    2. Sergiu Hart & Yishay Mansour, 2013. "How Long To Equilibrium? The Communication Complexity Of Uncoupled Equilibrium Procedures," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 10, pages 215-249, World Scientific Publishing Co. Pte. Ltd..
    3. Sergiu Hart & Yishay Mansour, 2006. "The Communication Complexity of Uncoupled Nash Equilibrium Procedures," Levine's Bibliography 122247000000001299, UCLA Department of Economics.
    4. Burkhard Schipper, 2015. "Strategic teaching and learning in games," Working Papers 151, University of California, Davis, Department of Economics.
    5. Ehud Lehrer & Eilon Solan, 2007. "Learning to play partially-specified equilibrium," Levine's Working Paper Archive 122247000000001436, David K. Levine.
    6. Michael Foley & Rory Smead & Patrick Forber & Christoph Riedl, 2021. "Avoiding the bullies: The resilience of cooperation among unequals," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    7. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2006. "Stochastic Approximations and Differential Inclusions, Part II: Applications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 673-695, November.
    8. Soham R. Phade & Venkat Anantharam, 2023. "Learning in Games with Cumulative Prospect Theoretic Preferences," Dynamic Games and Applications, Springer, vol. 13(1), pages 265-306, March.
    9. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    10. Germano, Fabrizio & Lugosi, Gabor, 2007. "Global Nash convergence of Foster and Young's regret testing," Games and Economic Behavior, Elsevier, vol. 60(1), pages 135-154, July.
    11. Du, Ye & Lehrer, Ehud, 2020. "Constrained no-regret learning," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 16-24.
    12. Nicolò Cesa-Bianchi & Gábor Lugosi & Gilles Stoltz, 2006. "Regret Minimization Under Partial Monitoring," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 562-580, August.
    13. Stoltz, Gilles & Lugosi, Gabor, 2007. "Learning correlated equilibria in games with compact sets of strategies," Games and Economic Behavior, Elsevier, vol. 59(1), pages 187-208, April.
    14. Cason, Timothy N. & Sharma, Tridib & Vadovič, Radovan, 2020. "Correlated beliefs: Predicting outcomes in 2 × 2 games," Games and Economic Behavior, Elsevier, vol. 122(C), pages 256-276.
    15. Ludovico Crippa & Yonatan Gur & Bar Light, 2022. "Equilibria in Repeated Games under No-Regret with Dynamic Benchmarks," Papers 2212.03152, arXiv.org, revised Jul 2023.
    16. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    17. Hendrik Vollmer, 2013. "What kind of game is everyday interaction?," Rationality and Society, , vol. 25(3), pages 370-404, August.
    18. Emerson Melo, 2021. "Learning in Random Utility Models Via Online Decision Problems," Papers 2112.10993, arXiv.org, revised Aug 2022.
    19. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    20. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:10:y:2019:i:1:p:6-:d:199803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.