IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v9y2017i1p3-d88007.html
   My bibliography  Save this article

Towards Incidence Management in 5G Based on Situational Awareness

Author

Listed:
  • Lorena Isabel Barona López

    (Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • Ángel Leonardo Valdivieso Caraguay

    (Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • Jorge Maestre Vidal

    (Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • Marco Antonio Sotelo Monge

    (Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain
    These authors contributed equally to this work.)

  • Luis Javier García Villalba

    (Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain
    These authors contributed equally to this work.)

Abstract

The fifth generation mobile network, or 5G, moves towards bringing solutions to deploying faster networks, with hundreds of thousands of simultaneous connections and massive data transfer. For this purpose, several emerging technologies are implemented, resulting in virtualization and self-organization of most of their components, which raises important challenges related to safety. In order to contribute to their resolution, this paper proposes a novel architecture for incident management on 5G. The approach combines the conventional risk management schemes with the Endsley Situational Awareness model, thus improving effectiveness in different aspects, among them the ability to adapt to complex and dynamical monitoring environments, and countermeasure tracking or the role of context when decision-making. The proposal takes into account all layers for information processing in 5G mobile networks, ranging from infrastructure to the actuators responsible for deploying corrective measures.

Suggested Citation

  • Lorena Isabel Barona López & Ángel Leonardo Valdivieso Caraguay & Jorge Maestre Vidal & Marco Antonio Sotelo Monge & Luis Javier García Villalba, 2017. "Towards Incidence Management in 5G Based on Situational Awareness," Future Internet, MDPI, vol. 9(1), pages 1-14, January.
  • Handle: RePEc:gam:jftint:v:9:y:2017:i:1:p:3-:d:88007
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/9/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/9/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sven Ove Hansson & Terje Aven, 2014. "Is Risk Analysis Scientific?," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1173-1183, July.
    2. Shin, Jinsoo & Son, Hanseong & Khalil ur, Rahman & Heo, Gyunyoung, 2015. "Development of a cyber security risk model using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 208-217.
    3. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jani Suomalainen & Kimmo Ahola & Mikko Majanen & Olli Mämmelä & Pekka Ruuska, 2018. "Security Awareness in Software-Defined Multi-Domain 5G Networks," Future Internet, MDPI, vol. 10(3), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    2. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Henrik Hassel & Alexander Cedergren, 2019. "Exploring the Conceptual Foundation of Continuity Management in the Context of Societal Safety," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1503-1519, July.
    4. Hamed Taherdoost, 2021. "A Review on Risk Management in Information Systems: Risk Policy, Control and Fraud Detection," Post-Print hal-03741848, HAL.
    5. McDermott, T.K.J. & Surminski, S., 2018. "Normative interpretations of climate risk assessment and how it affects local decision making – a study at the city scale in Cork, Ireland," Working Papers 309607, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    6. Jacob Taarup‐Esbensen, 2019. "Making Sense of Risk—A Sociological Perspective on the Management of Risk," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 749-760, April.
    7. Victor Cardenas, 2024. "Financial climate risk: a review of recent advances and key challenges," Papers 2404.07331, arXiv.org.
    8. Terje Aven, 2018. "Reflections on the Use of Conceptual Research in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2415-2423, November.
    9. Antonio Nesticò & Shuquan He & Gianluigi De Mare & Renato Benintendi & Gabriella Maselli, 2018. "The ALARP Principle in the Cost-Benefit Analysis for the Acceptability of Investment Risk," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    10. Brian H. MacGillivray, 2019. "Null Hypothesis Testing ≠ Scientific Inference: A Critique of the Shaky Premise at the Heart of the Science and Values Debate, and a Defense of Value‐Neutral Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1520-1532, July.
    11. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.
    12. Monzer, Mohamad-Houssein & Beydoun, Kamal & Ghaith, Alaa & Flaus, Jean-Marie, 2022. "Model-based IDS design for ICSs," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Terje Aven, 2018. "An Emerging New Risk Analysis Science: Foundations and Implications," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 876-888, May.
    14. repec:arp:tjssrr:2019:p:69-75 is not listed on IDEAS
    15. Mussard, Stéphane & Pi Alperin, María Noel, 2021. "Accounting for risk factors on health outcomes: The case of Luxembourg," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1180-1197.
    16. Kim, Hee Eun & Son, Han Seong & Kim, Jonghyun & Kang, Hyun Gook, 2017. "Systematic development of scenarios caused by cyber-attack-induced human errors in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 290-301.
    17. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    18. Heiner Ackermann & Erik Diessel & Michael Helmling & Neil Jami & Johanna Münch, 2024. "Computing Optimal Mitigation Plans for Force-Majeure Scenarios in Dynamic Manufacturing Chains," SN Operations Research Forum, Springer, vol. 5(2), pages 1-35, June.
    19. Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    20. Mangirdas Morkunas & Gintaras Cernius & Gintare Giriuniene, 2019. "Assessing Business Risks of Natural Gas Trading Companies: Evidence from GET Baltic," Energies, MDPI, vol. 12(14), pages 1-14, July.
    21. Scholz, Roland W. & Czichos, Reiner & Parycek, Peter & Lampoltshammer, Thomas J., 2020. "Organizational vulnerability of digital threats: A first validation of an assessment method," European Journal of Operational Research, Elsevier, vol. 282(2), pages 627-643.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:9:y:2017:i:1:p:3-:d:88007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.