IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v8y2016i2p21-d70033.html
   My bibliography  Save this article

Information Is Not a Virus, and Other Consequences of Human Cognitive Limits

Author

Listed:
  • Kristina Lerman

    (Information Science Institute, University of Southern California, Marina del Rey, CA 90292, USA)

Abstract

The many decisions that people make about what to pay attention to online shape the spread of information in online social networks. Due to the constraints of available time and cognitive resources, the ease of discovery strongly impacts how people allocate their attention to social media content. As a consequence, the position of information in an individual’s social feed, as well as explicit social signals about its popularity, determine whether it will be seen, and the likelihood that it will be shared with followers. Accounting for these cognitive limits simplifies mechanics of information diffusion in online social networks and explains puzzling empirical observations: ( i ) information generally fails to spread in social media and ( ii ) highly connected people are less likely to re-share information. Studies of information diffusion on different social media platforms reviewed here suggest that the interplay between human cognitive limits and network structure differentiates the spread of information from other social contagions, such as the spread of a virus through a population.

Suggested Citation

  • Kristina Lerman, 2016. "Information Is Not a Virus, and Other Consequences of Human Cognitive Limits," Future Internet, MDPI, vol. 8(2), pages 1-11, May.
  • Handle: RePEc:gam:jftint:v:8:y:2016:i:2:p:21-:d:70033
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/8/2/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/8/2/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rodriguez, Manuel Gomez & Leskovec, Jure & Balduzzi, David & Schölkopf, Bernhard, 2014. "Uncovering the structure and temporal dynamics of information propagation," Network Science, Cambridge University Press, vol. 2(1), pages 26-65, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerardo Iñiguez & Sara Heydari & János Kertész & Jari Saramäki, 2023. "Universal patterns in egocentric communication networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    3. Paul J. Croft, 2019. "Environmental Hazards: A Coverage Response Approach," Future Internet, MDPI, vol. 11(3), pages 1-15, March.
    4. Airani, Rajeev & Karande, Kiran, 2022. "How social media effects shape sentiments along the twitter journey?A Bayesian network approach," Journal of Business Research, Elsevier, vol. 142(C), pages 988-997.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solmaria Halleck Vega & Antoine Mandel, 2017. "A network-based approach to technology transfers in the context of climate policy," Post-Print halshs-01483963, HAL.
    2. Dahlqvist, Carl-Henrik & Gnabo, Jean-Yves, 2018. "Effective network inference through multivariate information transfer estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 376-394.
    3. Côme Billard & Anna Creti & Antoine Mandel, 2020. "How Environmental Policies Spread? A Network Approach to Diffusion in the U.S," Working Papers 2020.12, FAERE - French Association of Environmental and Resource Economists.
    4. Zhu, He & Ma, Jing, 2018. "Knowledge diffusion in complex networks by considering time-varying information channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 225-235.
    5. Sang, Chunyan & Li, Tun & Tian, Sirui & Xiao, Yunpeng & Xu, Guangxia, 2019. "SFTRD: A novel information propagation model in heterogeneous networks: Modeling and restraining strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 475-490.
    6. H Juliette T Unwin & Isobel Routledge & Seth Flaxman & Marian-Andrei Rizoiu & Shengjie Lai & Justin Cohen & Daniel J Weiss & Swapnil Mishra & Samir Bhatt, 2021. "Using Hawkes Processes to model imported and local malaria cases in near-elimination settings," PLOS Computational Biology, Public Library of Science, vol. 17(4), pages 1-18, April.
    7. Tong, Chao & He, Wenbo & Niu, Jianwei & Xie, Zhongyu, 2016. "A novel information cascade model in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 297-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:8:y:2016:i:2:p:21-:d:70033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.