IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i6p191-d1404971.html
   My bibliography  Save this article

Harnessing the Cloud: A Novel Approach to Smart Solar Plant Monitoring

Author

Listed:
  • Mohammad Imran Ali

    (National Center for Big Data & Cloud Computing, University of Engineering and Technology (UET), Peshawar 2023, Pakistan
    These authors contributed equally to this work.)

  • Shahi Dost

    (TIB—Leibniz Information Centre for Science and Technology, 30167 Hannover, Germany
    These authors contributed equally to this work.)

  • Khurram Shehzad Khattak

    (National Center for Big Data & Cloud Computing, University of Engineering and Technology (UET), Peshawar 2023, Pakistan
    These authors contributed equally to this work.)

  • Muhammad Imran Khan

    (Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al-Khobar 34754, Saudi Arabia
    These authors contributed equally to this work.)

  • Riaz Muhammad

    (Mechanical Engineering Department, College of Engineering, University of Bahrain, Isa Town Campus, Isa Town 810, Bahrain
    These authors contributed equally to this work.)

Abstract

Renewable Energy Sources (RESs) such as hydro, wind, and solar are merging as preferred alternatives to fossil fuels. Among these RESs, solar energy is the most ideal solution; it is gaining extensive interest around the globe. However, due to solar energy’s intermittent nature and sensitivity to environmental parameters (e.g., irradiance, dust, temperature, aging and humidity), real-time solar plant monitoring is imperative. This paper’s contribution is to compare and analyze current IoT trends and propose future research directions. As a result, this will be instrumental in the development of low-cost, real-time, scalable, reliable, and power-optimized solar plant monitoring systems. In this work, a comparative analysis has been performed on proposed solutions using the existing literature. This comparative analysis has been conducted considering five aspects: computer boards, sensors, communication, servers, and architectural paradigms. IoT architectural paradigms employed have been summarized and discussed with respect to communication, application layers, and storage capabilities. To facilitate enhanced IoT-based solar monitoring, an edge computing paradigm has been proposed. Suggestions are presented for the fabrication of edge devices and nodes using optimum compute boards, sensors, and communication modules. Different cloud platforms have been explored, and it was concluded that the public cloud platform Amazon Web Services is the ideal solution. Artificial intelligence-based techniques, methods, and outcomes are presented, which can help in the monitoring, analysis, and management of solar PV systems. As an outcome, this paper can be used to help researchers and academics develop low-cost, real-time, effective, scalable, and reliable solar monitoring systems.

Suggested Citation

  • Mohammad Imran Ali & Shahi Dost & Khurram Shehzad Khattak & Muhammad Imran Khan & Riaz Muhammad, 2024. "Harnessing the Cloud: A Novel Approach to Smart Solar Plant Monitoring," Future Internet, MDPI, vol. 16(6), pages 1-22, May.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:6:p:191-:d:1404971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/6/191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/6/191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahman, M.Mahbubur & Selvaraj, J. & Rahim, N.A. & Hasanuzzaman, M., 2018. "Global modern monitoring systems for PV based power generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4142-4158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    2. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
    3. Carlos Toledo & Lucía Serrano-Lujan & Jose Abad & Antonio Lampitelli & Antonio Urbina, 2019. "Measurement of Thermal and Electrical Parameters in Photovoltaic Systems for Predictive and Cross-Correlated Monitorization," Energies, MDPI, vol. 12(4), pages 1-20, February.
    4. Easter Joseph & Pradeep Menon Vijaya Kumar & Balbir Singh Mahinder Singh & Dennis Ling Chuan Ching, 2023. "Performance Monitoring Algorithm for Detection of Encapsulation Failures and Cell Corrosion in PV Modules," Energies, MDPI, vol. 16(8), pages 1-12, April.
    5. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Václav Beránek & Tomáš Olšan & Martin Libra & Vladislav Poulek & Jan Sedláček & Minh-Quan Dang & Igor I. Tyukhov, 2018. "New Monitoring System for Photovoltaic Power Plants’ Management," Energies, MDPI, vol. 11(10), pages 1-13, September.
    7. José Miguel Paredes-Parra & Antonio Javier García-Sánchez & Antonio Mateo-Aroca & Ángel Molina-García, 2019. "An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management," Energies, MDPI, vol. 12(5), pages 1-20, March.
    8. Shaheer Ansari & Afida Ayob & Molla S. Hossain Lipu & Mohamad Hanif Md Saad & Aini Hussain, 2021. "A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects," Sustainability, MDPI, vol. 13(15), pages 1-34, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:6:p:191-:d:1404971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.