IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3391-d1121685.html
   My bibliography  Save this article

Performance Monitoring Algorithm for Detection of Encapsulation Failures and Cell Corrosion in PV Modules

Author

Listed:
  • Easter Joseph

    (Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

  • Pradeep Menon Vijaya Kumar

    (Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

  • Balbir Singh Mahinder Singh

    (Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

  • Dennis Ling Chuan Ching

    (Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia)

Abstract

This research work aims to develop a fault detection and performance monitoring system for a photovoltaic (PV) system that can detect and communicate errors to the user. The proposed system uses real-time data from various sensors to identify performance problems and faults in the PV system, particularly for encapsulation failure and module corrosion. The system incorporates a user interface that operates on a micro-computer utilizing Python software to show the detected errors from the PV miniature scale system. Fault detection is achieved by comparing the One-diode model with a controlled state retrieved through field testing. A database is generated by the system based on acceptable training data and it serves as a reference point for detecting faults. The user is notified of any deviations based on the threshold value from the training data as an indication of an error by the system. The system offers real-time monitoring, easy-to-understand error messages, and remote access capability, making it an efficient and effective tool for both users and maintenance personnel to manage and maintain the PV system.

Suggested Citation

  • Easter Joseph & Pradeep Menon Vijaya Kumar & Balbir Singh Mahinder Singh & Dennis Ling Chuan Ching, 2023. "Performance Monitoring Algorithm for Detection of Encapsulation Failures and Cell Corrosion in PV Modules," Energies, MDPI, vol. 16(8), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3391-:d:1121685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahman, M.Mahbubur & Selvaraj, J. & Rahim, N.A. & Hasanuzzaman, M., 2018. "Global modern monitoring systems for PV based power generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4142-4158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faris E. Alfaris & Essam A. Al-Ammar & Ghazi A. Ghazi & Ahmed A. AL-Katheri, 2024. "A Cost-Effective Fault Diagnosis and Localization Approach for Utility-Scale PV Systems Using Limited Number of Sensors," Sustainability, MDPI, vol. 16(15), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    2. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
    3. Carlos Toledo & Lucía Serrano-Lujan & Jose Abad & Antonio Lampitelli & Antonio Urbina, 2019. "Measurement of Thermal and Electrical Parameters in Photovoltaic Systems for Predictive and Cross-Correlated Monitorization," Energies, MDPI, vol. 12(4), pages 1-20, February.
    4. Mohammad Imran Ali & Shahi Dost & Khurram Shehzad Khattak & Muhammad Imran Khan & Riaz Muhammad, 2024. "Harnessing the Cloud: A Novel Approach to Smart Solar Plant Monitoring," Future Internet, MDPI, vol. 16(6), pages 1-22, May.
    5. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Václav Beránek & Tomáš Olšan & Martin Libra & Vladislav Poulek & Jan Sedláček & Minh-Quan Dang & Igor I. Tyukhov, 2018. "New Monitoring System for Photovoltaic Power Plants’ Management," Energies, MDPI, vol. 11(10), pages 1-13, September.
    7. José Miguel Paredes-Parra & Antonio Javier García-Sánchez & Antonio Mateo-Aroca & Ángel Molina-García, 2019. "An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management," Energies, MDPI, vol. 12(5), pages 1-20, March.
    8. Shaheer Ansari & Afida Ayob & Molla S. Hossain Lipu & Mohamad Hanif Md Saad & Aini Hussain, 2021. "A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects," Sustainability, MDPI, vol. 13(15), pages 1-34, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3391-:d:1121685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.