IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i6p190-d1155201.html
   My bibliography  Save this article

Elastic Stack and GRAPHYP Knowledge Graph of Web Usage: A Win–Win Workflow for Semantic Interoperability in Decision Making

Author

Listed:
  • Otmane Azeroual

    (German Centre for Higher Education Research and Science Studies (DZHW), 10117 Berlin, Germany
    Chair of Databases and Information Systems, University of Hagen, 58097 Hagen, Germany)

  • Renaud Fabre

    (Dionysian Economics Lab (LED), University Paris 8, 93200 Saint-Denis, France)

  • Uta Störl

    (Chair of Databases and Information Systems, University of Hagen, 58097 Hagen, Germany)

  • Ruidong Qi

    (College of Computer Science, Inner Mongolia University, Hohhot 010031, China)

Abstract

The use of Elastic Stack (ELK) solutions and Knowledge Graphs (KGs) has attracted a lot of attention lately, with promises of vastly improving business performance based on new business insights and better decisions. This allows organizations not only to reap the ultimate benefits of data governance but also to consider the widest possible range of relevant information when deciding their next steps. In this paper, we examine how data management and data visualization are used in organizations that use ELK solutions to collect integrated data from different sources in one place and visualize and analyze them in near-real time. We also present some interpretable Knowledge Graphs, GRAPHYP, which are innovative by processing an analytical information geometry and can be used together with an ELK to improve data quality and visualize the data to make informed decisions in organizations. Good decisions are the backbone of successful organizations. Ultimately, this research is about integrating a combined solution between ELK and SKG GRAPHYP and showing users the advantages in this area.

Suggested Citation

  • Otmane Azeroual & Renaud Fabre & Uta Störl & Ruidong Qi, 2023. "Elastic Stack and GRAPHYP Knowledge Graph of Web Usage: A Win–Win Workflow for Semantic Interoperability in Decision Making," Future Internet, MDPI, vol. 15(6), pages 1-19, May.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:6:p:190-:d:1155201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/6/190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/6/190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abderahman Rejeb & John G. Keogh & Wayne Martindale & Damion Dooley & Edward Smart & Steven Simske & Samuel Fosso Wamba & John G. Breslin & Kosala Yapa Bandara & Subhasis Thakur & Kelly Liu & Bridgett, 2022. "Charting Past, Present, and Future Research in the Semantic Web and Interoperability," Future Internet, MDPI, vol. 14(6), pages 1-32, May.
    2. Renaud Fabre & Otmane Azeroual & Patrice Bellot & Joachim Schöpfel & Daniel Egret, 2022. "Retrieving Adversarial Cliques in Cognitive Communities: A New Conceptual Framework for Scientific Knowledge Graphs," Future Internet, MDPI, vol. 14(9), pages 1-18, September.
    3. Renaud Fabre & Otmane Azeroual & Joachim Schöpfel & Patrice Bellot & Daniel Egret, 2023. "A Multiverse Graph to Help Scientific Reasoning from Web Usage: Interpretable Patterns of Assessor Shifts in GRAPHYP," Future Internet, MDPI, vol. 15(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yannis Haralambous & Philippe Lenca, 2023. "Beyond the Semantic Web: Towards an Implicit Pragmatic Web and a Web of Social Representations," Future Internet, MDPI, vol. 15(7), pages 1-27, July.
    2. Renaud Fabre & Otmane Azeroual & Joachim Schöpfel & Patrice Bellot & Daniel Egret, 2023. "A Multiverse Graph to Help Scientific Reasoning from Web Usage: Interpretable Patterns of Assessor Shifts in GRAPHYP," Future Internet, MDPI, vol. 15(4), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:6:p:190-:d:1155201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.