IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i9p262-d908757.html
   My bibliography  Save this article

Retrieving Adversarial Cliques in Cognitive Communities: A New Conceptual Framework for Scientific Knowledge Graphs

Author

Listed:
  • Renaud Fabre

    (Dionysian Economics Laboratory (LED), University of Paris 8, 93200 Saint-Denis, France)

  • Otmane Azeroual

    (German Centre for Higher Education Research and Science Studies (DZHW), 10117 Berlin, Germany)

  • Patrice Bellot

    (CNRS, LIS, Aix Marseille University (AMU), 13007 Marseille, France)

  • Joachim Schöpfel

    (GERiiCO-Labor, Groupe d’Études et de Recherche Interdisciplinaire en Information et Communication, University of Lille, 59000 Lille, France)

  • Daniel Egret

    (Observatoire de Paris, Paris Sciences & Lettres University (PSL), 75006 Paris, France)

Abstract

The variety and diversity of published content are currently expanding in all fields of scholarly communication. Yet, scientific knowledge graphs (SKG) provide only poor images of the varied directions of alternative scientific choices, and in particular scientific controversies, which are not currently identified and interpreted. We propose to use the rich variety of knowledge present in search histories to represent cliques modeling the main interpretable practices of information retrieval issued from the same “cognitive community”, identified by their use of keywords and by the search experience of the users sharing the same research question. Modeling typical cliques belonging to the same cognitive community is achieved through a new conceptual framework, based on user profiles, namely a bipartite geometric scientific knowledge graph, SKG GRAPHYP. Further studies of interpretation will test differences of documentary profiles and their meaning in various possible contexts which studies on “disagreements in scientific literature” have outlined. This final adjusted version of GRAPHYP optimizes the modeling of “Manifold Subnetworks of Cliques in Cognitive Communities” (MSCCC), captured from previous user experience in the same search domain. Cliques are built from graph grids of three parameters outlining the manifold of search experiences: mass of users; intensity of uses of items; and attention, identified as a ratio of “feature augmentation” by literature on information retrieval, its mean value allows calculation of an observed “steady” value of the user/item ratio or, conversely, a documentary behavior “deviating” from this mean value. An illustration of our approach is supplied in a positive first test, which stimulates further work on modeling subnetworks of users in search experience, that could help identify the varied alternative documentary sources of information retrieval, and in particular the scientific controversies and scholarly disputes.

Suggested Citation

  • Renaud Fabre & Otmane Azeroual & Patrice Bellot & Joachim Schöpfel & Daniel Egret, 2022. "Retrieving Adversarial Cliques in Cognitive Communities: A New Conceptual Framework for Scientific Knowledge Graphs," Future Internet, MDPI, vol. 14(9), pages 1-18, September.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:9:p:262-:d:908757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/9/262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/9/262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhichao Fang & Rodrigo Costas & Wencan Tian & Xianwen Wang & Paul Wouters, 2021. "How is science clicked on Twitter? Click metrics for Bitly short links to scientific publications," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(7), pages 918-932, July.
    2. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, January.
    3. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    4. Lin, Yiling & Evans, James A. & Wu, Lingfei, 2022. "New directions in science emerge from disconnection and discord," Journal of Informetrics, Elsevier, vol. 16(1).
    5. Nedioui, Med Abdelhamid & Moussaoui, Abdelouahab & Saoud, Bilal & Babahenini, Mohamed Chaouki, 2020. "Detecting communities in social networks based on cliques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Otmane Azeroual & Renaud Fabre & Uta Störl & Ruidong Qi, 2023. "Elastic Stack and GRAPHYP Knowledge Graph of Web Usage: A Win–Win Workflow for Semantic Interoperability in Decision Making," Future Internet, MDPI, vol. 15(6), pages 1-19, May.
    2. Renaud Fabre & Otmane Azeroual & Joachim Schöpfel & Patrice Bellot & Daniel Egret, 2023. "A Multiverse Graph to Help Scientific Reasoning from Web Usage: Interpretable Patterns of Assessor Shifts in GRAPHYP," Future Internet, MDPI, vol. 15(4), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    2. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    5. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    6. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    7. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    8. Lomi, Alessandro & Fonti, Fabio, 2012. "Networks in markets and the propensity of companies to collaborate: An empirical test of three mechanisms," Economics Letters, Elsevier, vol. 114(2), pages 216-220.
    9. Zhang, Xuxi & Liu, Xianping & Lewis, Frank L. & Wang, Xia, 2020. "Bipartite tracking consensus of nonlinear multi-agent systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Bing Han & Liyan Yang, 2013. "Social Networks, Information Acquisition, and Asset Prices," Management Science, INFORMS, vol. 59(6), pages 1444-1457, June.
    11. Dimitrios Karamanis, 2022. "Defence partnerships, military expenditure, investment, and economic growth: an analysis in PESCO countries," GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe 173, Hellenic Observatory, LSE.
    12. Levent V. Orman, 2016. "Information markets over trust networks," Electronic Commerce Research, Springer, vol. 16(4), pages 529-551, December.
    13. Zhu, Yu-Xiao & Cao, Yan-Yan & Chen, Ting & Qiu, Xiao-Yan & Wang, Wei & Hou, Rui, 2018. "Crossover phenomena in growth pattern of social contagions with restricted contact," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 408-414.
    14. Pablo Galaso & Adrián Rodríguez Miranda & Sebastian Goinheix, 2018. "Local development, social capital and social network analysis: evidence from Uruguay," Revista de Estudios Regionales, Universidades Públicas de Andalucía, vol. 3, pages 137-163.
    15. Takahiro Ezaki & Naoki Masuda, 2017. "Reinforcement learning account of network reciprocity," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-8, December.
    16. Mariann Ollar & Marzena Rostek, 2011. "Information Aggregation and Innovation in Market Design," Working Papers 11-12, NET Institute.
    17. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    18. Lillo, Felipe & Valdés, Rodrigo, 2016. "Dynamics of financial markets and transaction costs: A graph-based study," Research in International Business and Finance, Elsevier, vol. 38(C), pages 455-465.
    19. Usha Sridhar & Sridhar Mandyam, 2016. "Loan Allocation and Guarantee Structure for Group Borrower Networks in Microfinance," Studies in Microeconomics, , vol. 4(2), pages 100-114, December.
    20. Arifovic, Jasmina & Eaton, B. Curtis & Walker, Graeme, 2015. "The coevolution of beliefs and networks," Journal of Economic Behavior & Organization, Elsevier, vol. 120(C), pages 46-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:9:p:262-:d:908757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.