IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i4p134-d1112675.html
   My bibliography  Save this article

A Comparative Study of Single and Multi-Stage Forecasting Algorithms for the Prediction of Electricity Consumption Using a UK-National Health Service (NHS) Hospital Dataset

Author

Listed:
  • Ahmad Taha

    (James Watt School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK
    These authors contributed equally to this work.)

  • Basel Barakat

    (School of Computer Science, University of Sunderland, Sunderland SR6 0DD, UK
    These authors contributed equally to this work.)

  • Mohammad M. A. Taha

    (Independent Researcher, Dover, NH 03820, USA)

  • Mahmoud A. Shawky

    (James Watt School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK
    These authors contributed equally to this work.)

  • Chun Sing Lai

    (Brunel Interdisciplinary Power Systems Research Centre, Brunel University London, London UB8 3PH, UK)

  • Sajjad Hussain

    (James Watt School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

  • Muhammad Zainul Abideen

    (James Watt School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

  • Qammer H. Abbasi

    (James Watt School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow G12 8QQ, UK)

Abstract

Accurately looking into the future was a significantly major challenge prior to the era of big data, but with rapid advancements in the Internet of Things (IoT), Artificial Intelligence (AI), and the data availability around us, this has become relatively easier. Nevertheless, in order to ensure high-accuracy forecasting, it is crucial to consider suitable algorithms and the impact of the extracted features. This paper presents a framework to evaluate a total of nine forecasting algorithms categorised into single and multistage models, constructed from the Prophet, Support Vector Regression (SVR), Long Short-Term Memory (LSTM), and the Least Absolute Shrinkage and Selection Operator (LASSO) approaches, applied to an electricity demand dataset from an NHS hospital. The aim is to see such techniques widely used in accurately predicting energy consumption, limiting the negative impacts of future waste on energy, and making a contribution towards the 2050 net zero carbon target. The proposed method accounts for patterns in demand and temperature to accurately forecast consumption. The Coefficient of Determination ( R 2 ), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) were used to evaluate the algorithms’ performance. The results show the superiority of the Long Short-Term Memory (LSTM) model and the multistage Facebook Prophet model, with R 2 values of 87.20 % and 68.06 % , respectively.

Suggested Citation

  • Ahmad Taha & Basel Barakat & Mohammad M. A. Taha & Mahmoud A. Shawky & Chun Sing Lai & Sajjad Hussain & Muhammad Zainul Abideen & Qammer H. Abbasi, 2023. "A Comparative Study of Single and Multi-Stage Forecasting Algorithms for the Prediction of Electricity Consumption Using a UK-National Health Service (NHS) Hospital Dataset," Future Internet, MDPI, vol. 15(4), pages 1-17, March.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:4:p:134-:d:1112675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/4/134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/4/134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdel-Aal, R.E. & Al-Garni, A.Z. & Al-Nassar, Y.N., 1997. "Modelling and forecasting monthly electric energy consumption in eastern Saudi Arabia using abductive networks," Energy, Elsevier, vol. 22(9), pages 911-921.
    2. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    3. Abdel-Aal, R.E. & Al-Garni, A.Z., 1997. "Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis," Energy, Elsevier, vol. 22(11), pages 1059-1069.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Velasquez, Carlos E. & Zocatelli, Matheus & Estanislau, Fidellis B.G.L. & Castro, Victor F., 2022. "Analysis of time series models for Brazilian electricity demand forecasting," Energy, Elsevier, vol. 247(C).
    3. Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
    4. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    5. de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
    6. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    7. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    8. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    9. Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
    10. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    11. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    12. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    13. Attia, Shady & Evrard, Arnaud & Gratia, Elisabeth, 2012. "Development of benchmark models for the Egyptian residential buildings sector," Applied Energy, Elsevier, vol. 94(C), pages 270-284.
    14. Nahid Sultana & S. M. Zakir Hossain & Salma Hamad Almuhaini & Dilek Düştegör, 2022. "Bayesian Optimization Algorithm-Based Statistical and Machine Learning Approaches for Forecasting Short-Term Electricity Demand," Energies, MDPI, vol. 15(9), pages 1-26, May.
    15. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    16. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
    17. He, Yaoyao & Qin, Yang & Wang, Shuo & Wang, Xu & Wang, Chao, 2019. "Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network," Applied Energy, Elsevier, vol. 233, pages 565-575.
    18. Egelioglu, F. & Mohamad, A.A. & Guven, H., 2001. "Economic variables and electricity consumption in Northern Cyprus," Energy, Elsevier, vol. 26(4), pages 355-362.
    19. Abdel-Aal, R.E. & Elhadidy, M.A. & Shaahid, S.M., 2009. "Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks," Renewable Energy, Elsevier, vol. 34(7), pages 1686-1699.
    20. Cao, Guohua & Wu, Lijuan, 2016. "Support vector regression with fruit fly optimization algorithm for seasonal electricity consumption forecasting," Energy, Elsevier, vol. 115(P1), pages 734-745.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:4:p:134-:d:1112675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.