IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i10p322-d1249933.html
   My bibliography  Save this article

Application of an Effective Hierarchical Deep-Learning-Based Object Detection Model Integrated with Image-Processing Techniques for Detecting Speed Limit Signs, Rockfalls, Potholes, and Car Crashes

Author

Listed:
  • Yao-Liang Chung

    (Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung City 202301, Taiwan)

Abstract

Against the backdrop of rising road traffic accident rates, measures to prevent road traffic accidents have always been a pressing issue in Taiwan. Road traffic accidents are mostly caused by speeding and roadway obstacles, especially in the form of rockfalls, potholes, and car crashes (involving damaged cars and overturned cars). To address this, it was necessary to design a real-time detection system that could detect speed limit signs, rockfalls, potholes, and car crashes, which would alert drivers to make timely decisions in the event of an emergency, thereby preventing secondary car crashes. This system would also be useful for alerting the relevant authorities, enabling a rapid response to the situation. In this study, a hierarchical deep-learning-based object detection model is proposed based on You Only Look Once v7 (YOLOv7) and mask region-based convolutional neural network (Mask R-CNN) algorithms. In the first level, YOLOv7 identifies speed limit signs and rockfalls, potholes, and car crashes. In the second level, Mask R-CNN subdivides the speed limit signs into nine categories (30, 40, 50, 60, 70, 80, 90, 100, and 110 km/h). The images used in this study consisted of screen captures of dashcam footage as well as images obtained from the Tsinghua-Tencent 100K dataset, Google Street View, and Google Images searches. During model training, we employed Gaussian noise and image rotation to simulate poor weather conditions as well as obscured, slanted, or twisted objects. Canny edge detection was used to enhance the contours of the detected objects and accentuate their features. The combined use of these image-processing techniques effectively increased the quantity and variety of images in the training set. During model testing, we evaluated the model’s performance based on its mean average precision (mAP). The experimental results showed that the mAP of our proposed model was 8.6 percentage points higher than that of the YOLOv7 model—a significant improvement in the overall accuracy of the model. In addition, we tested the model using videos showing different scenarios that had not been used in the training process, finding the model to have a rapid response time and a lower overall mean error rate. To summarize, the proposed model is a good candidate for road safety detection.

Suggested Citation

  • Yao-Liang Chung, 2023. "Application of an Effective Hierarchical Deep-Learning-Based Object Detection Model Integrated with Image-Processing Techniques for Detecting Speed Limit Signs, Rockfalls, Potholes, and Car Crashes," Future Internet, MDPI, vol. 15(10), pages 1-26, September.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:10:p:322-:d:1249933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/10/322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/10/322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoyan Yu & Marin Marinov, 2020. "A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ángel Valera & Francisco Valero & Marina Vallés & Antonio Besa & Vicente Mata & Carlos Llopis-Albert, 2021. "Navigation of Autonomous Light Vehicles Using an Optimal Trajectory Planning Algorithm," Sustainability, MDPI, vol. 13(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:10:p:322-:d:1249933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.