Fraud Detection Using Neural Networks: A Case Study of Income Tax
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- César Pérez López & María Jesús Delgado Rodríguez & Sonia de Lucas Santos, 2019. "Tax Fraud Detection through Neural Networks: An Application Using a Sample of Personal Income Taxpayers," Future Internet, MDPI, vol. 11(4), pages 1-13, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kudzanai Charity Muchuchuti, 2024. "An Ensemble Machine Learning Model to Detect Tax Fraud: Conceptual Framework," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 2276-2282, June.
- Carmen De-Pablos-Heredero, 2019. "Future Intelligent Systems and Networks," Future Internet, MDPI, vol. 11(6), pages 1-2, June.
- César Pérez López & María Jesús Delgado Rodríguez & Sonia de Lucas Santos, 2023. "Modelización de los factores que afectan al fraude fiscal con técnicas de minería de datos: aplicación al Impuesto de la Renta en España," Hacienda Pública Española / Review of Public Economics, IEF, vol. 246(3), pages 137-164, September.
- Camino González Vasco & María Jesús Delgado Rodríguez & Sonia de Lucas Santos, 2021. "Segmentation of Potential Fraud Taxpayers and Characterization in Personal Income Tax Using Data Mining Techniques," Hacienda Pública Española / Review of Public Economics, IEF, vol. 239(4), pages 127-157, November.
More about this item
Keywords
fraud detection; income tax; multi-layer perceptron; neural network; tax fraud;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:6:p:168-:d:828622. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.