Forecasting Students Dropout: A UTAD University Study
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chung, Jae Young & Lee, Sunbok, 2019. "Dropout early warning systems for high school students using machine learning," Children and Youth Services Review, Elsevier, vol. 96(C), pages 346-353.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Isaac Caicedo-Castro, 2023. "Course Prophet: A System for Predicting Course Failures with Machine Learning: A Numerical Methods Case Study," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
- Ivan Miguel Pires, 2022. "Smart Objects and Technologies for Social Good," Future Internet, MDPI, vol. 14(12), pages 1-3, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Daniel Zapata-Medina & Albeiro Espinosa-Bedoya & Jovani Alberto Jiménez-Builes, 2024. "Improving the Automatic Detection of Dropout Risk in Middle and High School Students: A Comparative Study of Feature Selection Techniques," Mathematics, MDPI, vol. 12(12), pages 1-20, June.
- Rebai, Sonia & Ben Yahia, Fatma & Essid, Hédi, 2020. "A graphically based machine learning approach to predict secondary schools performance in Tunisia," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
- Joyce de Souza Zanirato Maia & Ana Paula Arantes Bueno & Joao Ricardo Sato, 2023. "Applications of Artificial Intelligence Models in Educational Analytics and Decision Making: A Systematic Review," World, MDPI, vol. 4(2), pages 1-26, May.
- Anne Parlina & Kalamullah Ramli & Hendri Murfi, 2021. "Exposing Emerging Trends in Smart Sustainable City Research Using Deep Autoencoders-Based Fuzzy C-Means," Sustainability, MDPI, vol. 13(5), pages 1-28, March.
- Bacon, Victoria R. & Kearney, Christopher A., 2020. "School climate and student-based contextual learning factors as predictors of school absenteeism severity at multiple levels via CHAID analysis," Children and Youth Services Review, Elsevier, vol. 118(C).
More about this item
Keywords
students dropout; Random Forest; XGBoost; CatBoost; artificial neural network; permutation feature importance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:3:p:76-:d:760686. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.