IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i12p366-d995764.html
   My bibliography  Save this article

A Low-Cost Open-Source Architecture for a Digital Signage Emergency Evacuation System for Cruise Ships, Based on IoT and LTE/4G Technologies

Author

Listed:
  • Vasileios Cheimaras

    (Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece)

  • Athanasios Trigkas

    (Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece)

  • Panagiotis Papageorgas

    (Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece)

  • Dimitrios Piromalis

    (Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece)

  • Emmanouil Sofianopoulos

    (Department of Electrical and Electronics Engineering, University of West Attica, 12244 Athens, Greece)

Abstract

During a ship evacuation, many people panic as they do not know the direction that leads to the emergency muster station. Moreover, sometimes passengers get crowded in corridors or stairs, so they cannot save their lives. This paper proposes an IoT-enabled architecture for digital signage systems that directs passengers to the muster stations of a cruise ship by following the less dangerous route. Thus, crews’ and passengers’ safety risks during a ship evacuation can be low, and human health hazards may be limited. The system is based on a low-cost and open-source architecture that can also be used in a variety of fields in industrial IoT applications. The proposed modular digital signage architecture utilizes Light Emitting Diode (LED) strips that are remotely managed through a private Long-Term Evolution (LTE)/Fourth Generation (4G) cellular network. Publish–subscribe communication protocols were used for the control of the digital strips and particularly through a Message Queuing Telemetry Transport (MQTT) broker who publishes/subscribes every message to specific topics of the realized IoT platform, while the overall digital signage system centralization was implemented with an appropriate dashboard supported from an open-source RESTful API.

Suggested Citation

  • Vasileios Cheimaras & Athanasios Trigkas & Panagiotis Papageorgas & Dimitrios Piromalis & Emmanouil Sofianopoulos, 2022. "A Low-Cost Open-Source Architecture for a Digital Signage Emergency Evacuation System for Cruise Ships, Based on IoT and LTE/4G Technologies," Future Internet, MDPI, vol. 14(12), pages 1-18, December.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:12:p:366-:d:995764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/12/366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/12/366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping, Ping & Wang, Ke & Kong, Depeng, 2018. "Analysis of emergency evacuation in an offshore platform using evacuation simulation modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 601-612.
    2. Heng Wang & Zehao Jiang & Tiandong Xu & Feng Li, 2021. "A Quantitative Approach of Subway Station Passengers’ Heterogeneity of Decision Preference Considering Personality Traits during Emergency Evacuation," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Guo, Ning & Ling, Xiang & Ding, Zhongjun & Long, Jiancheng & Zhu, Kongjin, 2019. "An improved heuristic-based model to reproduce pedestrian dynamic on the single-file staircase," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Washington Velasquez & Manuel S. Alvarez-Alvarado, 2021. "Outdoors Evacuation Routes Algorithm Using Cellular Automata and Graph Theory for Uphills and Downhills," Sustainability, MDPI, vol. 13(9), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:12:p:366-:d:995764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.