IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i11p295-d683969.html
   My bibliography  Save this article

Detection of Hidden Communities in Twitter Discussions of Varying Volumes

Author

Listed:
  • Ivan Blekanov

    (Faculty of Applied Mathematics and Control Processes, St. Petersburg State University, 199004 St. Petersburg, Russia)

  • Svetlana S. Bodrunova

    (School of Journalism and Mass Communications, St. Petersburg State University, 199004 St. Petersburg, Russia)

  • Askar Akhmetov

    (Faculty of Applied Mathematics and Control Processes, St. Petersburg State University, 199004 St. Petersburg, Russia)

Abstract

The community-based structure of communication on social networking sites has long been a focus of scholarly attention. However, the problem of discovery and description of hidden communities, including defining the proper level of user aggregation, remains an important problem not yet resolved. Studies of online communities have clear social implications, as they allow for assessment of preference-based user grouping and the detection of socially hazardous groups. The aim of this study is to comparatively assess the algorithms that effectively analyze large user networks and extract hidden user communities from them. The results we have obtained show the most suitable algorithms for Twitter datasets of different volumes (dozen thousands, hundred thousands, and millions of tweets). We show that the Infomap and Leiden algorithms provide for the best results overall, and we advise testing a combination of these algorithms for detecting discursive communities based on user traits or views. We also show that the generalized K -means algorithm does not apply to big datasets, while a range of other algorithms tend to prioritize the detection of just one big community instead of many that would mirror the reality better. For isolating overlapping communities, the GANXiS algorithm should be used, while OSLOM is not advised.

Suggested Citation

  • Ivan Blekanov & Svetlana S. Bodrunova & Askar Akhmetov, 2021. "Detection of Hidden Communities in Twitter Discussions of Varying Volumes," Future Internet, MDPI, vol. 13(11), pages 1-17, November.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:11:p:295-:d:683969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/11/295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/11/295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Svetlana S. Bodrunova & Ivan Blekanov & Anna Smoliarova & Anna Litvinenko, 2019. "Beyond Left and Right: Real-World Political Polarization in Twitter Discussions on Inter-Ethnic Conflicts," Media and Communication, Cogitatio Press, vol. 7(3), pages 119-132.
    2. Svetlana S. Bodrunova & Andrey V. Orekhov & Ivan S. Blekanov & Nikolay S. Lyudkevich & Nikita A. Tarasov, 2020. "Topic Detection Based on Sentence Embeddings and Agglomerative Clustering with Markov Moment," Future Internet, MDPI, vol. 12(9), pages 1-17, August.
    3. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svetlana S. Bodrunova, 2022. "Editorial for the Special Issue “Selected Papers from the 9th Annual Conference ‘Comparative Media Studies in Today’s World’ (CMSTW’2021)”," Future Internet, MDPI, vol. 14(11), pages 1-3, November.
    2. Dugué, Nicolas & Perez, Anthony, 2022. "Direction matters in complex networks: A theoretical and applied study for greedy modularity optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlana S. Bodrunova, 2022. "Editorial for the Special Issue “Selected Papers from the 9th Annual Conference ‘Comparative Media Studies in Today’s World’ (CMSTW’2021)”," Future Internet, MDPI, vol. 14(11), pages 1-3, November.
    2. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    3. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    4. Svetlana S. Bodrunova & Andrey V. Orekhov & Ivan S. Blekanov & Nikolay S. Lyudkevich & Nikita A. Tarasov, 2020. "Topic Detection Based on Sentence Embeddings and Agglomerative Clustering with Markov Moment," Future Internet, MDPI, vol. 12(9), pages 1-17, August.
    5. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    6. Arora, Swapan Deep & Singh, Guninder Pal & Chakraborty, Anirban & Maity, Moutusy, 2022. "Polarization and social media: A systematic review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    7. Iandoli, Luca & Primario, Simonetta & Zollo, Giuseppe, 2021. "The impact of group polarization on the quality of online debate in social media: A systematic literature review," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    8. Greg Morrison & L Mahadevan, 2012. "Discovering Communities through Friendship," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    9. Jiang, Yawen & Jia, Caiyan & Yu, Jian, 2013. "An efficient community detection method based on rank centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2182-2194.
    10. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    11. Chagas, Guilherme Oliveira & Lorena, Luiz Antonio Nogueira & dos Santos, Rafael Duarte Coelho, 2022. "A hybrid heuristic for overlapping community detection through the conductance minimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    12. Dugué, Nicolas & Perez, Anthony, 2022. "Direction matters in complex networks: A theoretical and applied study for greedy modularity optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    13. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    14. Klapka, Pavel & Kraft, Stanislav & Halás, Marián, 2020. "Network based definition of functional regions: A graph theory approach for spatial distribution of traffic flows," Journal of Transport Geography, Elsevier, vol. 88(C).
    15. Wang, Yuyao & Bu, Zhan & Yang, Huan & Li, Hui-Jia & Cao, Jie, 2021. "An effective and scalable overlapping community detection approach: Integrating social identity model and game theory," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    16. Fu, Xianghua & Liu, Liandong & Wang, Chao, 2013. "Detection of community overlap according to belief propagation and conflict," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 941-952.
    17. Dafne E. van Kuppevelt & Rena Bakhshi & Eelke M. Heemskerk & Frank W. Takes, 2022. "Community membership consistency applied to corporate board interlock networks," Journal of Computational Social Science, Springer, vol. 5(1), pages 841-860, May.
    18. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    19. Kyle F Davis & Paolo D'Odorico & Francesco Laio & Luca Ridolfi, 2013. "Global Spatio-Temporal Patterns in Human Migration: A Complex Network Perspective," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-8, January.
    20. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:11:p:295-:d:683969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.