IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v12y2020i7p114-d381347.html
   My bibliography  Save this article

An IoT-Based Framework for Smart Water Supply Systems Management

Author

Listed:
  • Rosiberto Gonçalves

    (Department Center of Informatics (CIn), Federal University of Pernambuco (UFPE), Recife 50.740-560, Brazil
    These authors contributed equally to this work.)

  • Jesse J. M. Soares

    (Department Center of Informatics (CIn), Federal University of Pernambuco (UFPE), Recife 50.740-560, Brazil
    These authors contributed equally to this work.)

  • Ricardo M. F. Lima

    (Department Center of Informatics (CIn), Federal University of Pernambuco (UFPE), Recife 50.740-560, Brazil
    These authors contributed equally to this work.)

Abstract

The world’s population growth and climate changes increase the demand for high-quality water. This fact forces humankind to create new water management strategies. Smart cities have successfully applied the Internet of Things (IoT) technology in many sectors. Moreover, Complex Event Processing (CEP) can analyze and process large data sets produced by IoT sensors in real-time. Traditional business processes are too rigid in expressing the dynamic behavior of water supply systems. Every execution path must be explicitly specified. On the other hand, declarative business processes allow execution paths that are not prohibited by the rules, providing more flexibility for water supply managers. This paper joins together IoT, CEP, and declarative processes to create a powerful, efficient, and flexible architecture (REFlex Water) to manage water supply systems. To the knowledge of the authors, REFlex Water is the first solution to combine these technologies in the context of water supply systems. The paper describes the REFlex Water architecture and demonstrates its application to a real water system from a Brazilian municipality. Results are promising, and the managers from the Brazilian water company are expanding the use of REFlex Water to other sectors of their water supply system.

Suggested Citation

  • Rosiberto Gonçalves & Jesse J. M. Soares & Ricardo M. F. Lima, 2020. "An IoT-Based Framework for Smart Water Supply Systems Management," Future Internet, MDPI, vol. 12(7), pages 1-17, July.
  • Handle: RePEc:gam:jftint:v:12:y:2020:i:7:p:114-:d:381347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/12/7/114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/12/7/114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Navarro-Hellín, H. & Torres-Sánchez, R. & Soto-Valles, F. & Albaladejo-Pérez, C. & López-Riquelme, J.A. & Domingo-Miguel, R., 2015. "A wireless sensors architecture for efficient irrigation water management," Agricultural Water Management, Elsevier, vol. 151(C), pages 64-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Oates, M.J. & Fernández-López, A. & Ferrández-Villena, M. & Ruiz-Canales, A., 2017. "Temperature compensation in a low cost frequency domain (capacitance based) soil moisture sensor," Agricultural Water Management, Elsevier, vol. 183(C), pages 86-93.
    3. Thawatchai Thongleam & Kriengkrai Meethaworn & Sanya Kuankid, 2024. "Enhancing melon yield through a low-cost drip irrigation control system with time and soil sensor," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(1), pages 13-22.
    4. Cáceres, Rafaela & Pol, Enric & Narváez, Lola & Puerta, Anna & Marfà, Oriol, 2017. "Web app for real-time monitoring of the performance of constructed wetlands treating horticultural leachates," Agricultural Water Management, Elsevier, vol. 183(C), pages 177-185.
    5. López-Riquelme, J.A. & Pavón-Pulido, N. & Navarro-Hellín, H. & Soto-Valles, F. & Torres-Sánchez, R., 2017. "A software architecture based on FIWARE cloud for Precision Agriculture," Agricultural Water Management, Elsevier, vol. 183(C), pages 123-135.
    6. M. Safdar Munir & Imran Sarwar Bajwa & M. Asif Naeem & Bushra Ramzan, 2018. "Design and Implementation of an IoT System for Smart Energy Consumption and Smart Irrigation in Tunnel Farming," Energies, MDPI, vol. 11(12), pages 1-18, December.
    7. Oates, M.J. & Ramadan, K. & Molina-Martínez, J.M. & Ruiz-Canales, A., 2017. "Automatic fault detection in a low cost frequency domain (capacitance based) soil moisture sensor," Agricultural Water Management, Elsevier, vol. 183(C), pages 41-48.
    8. Garrigós, J. & Molina, J.M. & Alarcón, M. & Chazarra, J. & Ruiz-Canales, A. & Martínez, J.J., 2017. "Platform for the management of hydraulic chambers based on mobile devices and Bluetooth Low-Energy motes," Agricultural Water Management, Elsevier, vol. 183(C), pages 169-176.
    9. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    10. Alireza Abdollahi & Karim Rejeb & Abderahman Rejeb & Mohamed M. Mostafa & Suhaiza Zailani, 2021. "Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    11. Montesano, Francesco Fabiano & van Iersel, Marc W. & Boari, Francesca & Cantore, Vito & D’Amato, Giulio & Parente, Angelo, 2018. "Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance," Agricultural Water Management, Elsevier, vol. 203(C), pages 20-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:12:y:2020:i:7:p:114-:d:381347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.