IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i2p41-d205150.html
   My bibliography  Save this article

A Scheme to Design Community Detection Algorithms in Various Networks

Author

Listed:
  • Haoye Lu

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Amiya Nayak

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

Abstract

Network structures, consisting of nodes and edges, have applications in almost all subjects. A set of nodes is called a community if the nodes have strong interrelations. Industries (including cell phone carriers and online social media companies) need community structures to allocate network resources and provide proper and accurate services. However, most detection algorithms are derived independently, which is arduous and even unnecessary. Although recent research shows that a general detection method that serves all purposes does not exist, we believe that there is some general procedure of deriving detection algorithms. In this paper, we represent such a general scheme. We mainly focus on two types of networks: transmission networks and similarity networks. We reduce them to a unified graph model, based on which we propose a method to define and detect community structures. Finally, we also give a demonstration to show how our design scheme works.

Suggested Citation

  • Haoye Lu & Amiya Nayak, 2019. "A Scheme to Design Community Detection Algorithms in Various Networks," Future Internet, MDPI, vol. 11(2), pages 1-17, February.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:2:p:41-:d:205150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/2/41/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/2/41/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    2. Li, Hui-Jia & Bu, Zhan & Li, Yulong & Zhang, Zhongyuan & Chu, Yanchang & Li, Guijun & Cao, Jie, 2018. "Evolving the attribute flow for dynamical clustering in signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 20-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Honghai & Deng, Zhenghong & Li, Huijia & Hu, Jun & Song, Qun & Xia, Chengyi, 2021. "Complex networks from time series data allow an efficient historical stage division of urban air quality information," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    3. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Jo, Hang-Hyun & Moon, Eunyoung, 2016. "Dynamical complexity in the perception-based network formation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 282-292.
    5. Yu, Shuo & Alqahtani, Fayez & Tolba, Amr & Lee, Ivan & Jia, Tao & Xia, Feng, 2022. "Collaborative Team Recognition: A Core Plus Extension Structure," Journal of Informetrics, Elsevier, vol. 16(4).
    6. Jiang, Lincheng & Zhao, Xiang & Ge, Bin & Xiao, Weidong & Ruan, Yirun, 2019. "An efficient algorithm for mining a set of influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 58-65.
    7. Mary F. McGuire, 2014. "Pancreatic Cancer: Insights from Counterterrorism Theories," Decision Analysis, INFORMS, vol. 11(4), pages 265-276, December.
    8. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    9. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    10. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    11. Vesselkova, Alexandr & Riikonena, Antti & Hämmäinena & Heikki, 2015. "Evolution of mobile handset feature dependences," 26th European Regional ITS Conference, Madrid 2015 127192, International Telecommunications Society (ITS).
    12. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    13. Lu, Hong & Sang, Xiaoshuang & Zhao, Qinghua & Lu, Jianfeng, 2020. "Community detection algorithm based on nonnegative matrix factorization and pairwise constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    15. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    16. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    17. Susan Dina Ghiassian & Jörg Menche & Albert-László Barabási, 2015. "A DIseAse MOdule Detection (DIAMOnD) Algorithm Derived from a Systematic Analysis of Connectivity Patterns of Disease Proteins in the Human Interactome," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-21, April.
    18. Jean-Gabriel Young & Antoine Allard & Laurent Hébert-Dufresne & Louis J Dubé, 2015. "A Shadowing Problem in the Detection of Overlapping Communities: Lifting the Resolution Limit through a Cascading Procedure," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-19, October.
    19. Wang, Yuyao & Bu, Zhan & Yang, Huan & Li, Hui-Jia & Cao, Jie, 2021. "An effective and scalable overlapping community detection approach: Integrating social identity model and game theory," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    20. Xiaofeng Wang & Gongshen Liu & Jianhua Li & Jan P Nees, 2017. "Locating Structural Centers: A Density-Based Clustering Method for Community Detection," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:2:p:41-:d:205150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.