IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i3p40-814d1478296.html
   My bibliography  Save this article

Forecasting the CBOE VIX and SKEW Indices Using Heterogeneous Autoregressive Models

Author

Listed:
  • Massimo Guidolin

    (BAFFI CAREFIN Centre, Bocconi University, 21100 Milan, Italy)

  • Giulia F. Panzeri

    (BAFFI CAREFIN Centre, Bocconi University, 21100 Milan, Italy)

Abstract

We analyze the predictability of daily data on the CBOE V I X and S K E W indices, used to capture the average level of risk-neutral risk and downside risk, respectively, as implied by S&P 500 index options. In particular, we use forecast models from the Heterogeneous Autoregressive ( H A R ) class to test whether and how lagged values of the V I X and of the S K E W may increase the forecasting power of H A R for the S K E W and the V I X . We find that a simple H A R is very hard to beat in out-of-sample experiments aimed at forecasting the V I X . In the case of the S K E W , the benchmarks (the random walk and an A R ( 1 ) ) are clearly outperformed by H A R models at all the forecast horizons considered and there is evidence that special definitions of the S K E W index based on put options data only yield superior forecasts at all horizons.

Suggested Citation

  • Massimo Guidolin & Giulia F. Panzeri, 2024. "Forecasting the CBOE VIX and SKEW Indices Using Heterogeneous Autoregressive Models," Forecasting, MDPI, vol. 6(3), pages 1-33, September.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:3:p:40-814:d:1478296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/3/40/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/3/40/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2021. "The skewness index: uncovering the relationship with volatility and market returns," Applied Economics, Taylor & Francis Journals, vol. 53(31), pages 3619-3635, July.
    2. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    3. Byun, Suk Joon & Kim, Jun Sik, 2013. "The information content of risk-neutral skewness for volatility forecasting," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 142-161.
    4. Hentschel, Ludger, 2003. "Errors in Implied Volatility Estimation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(4), pages 779-810, December.
    5. James S. Doran & David R. Peterson & Brian C. Tarrant, 2007. "Is there information in the volatility skew?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(10), pages 921-959, October.
    6. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    7. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    8. Bing Han, 2008. "Investor Sentiment and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 387-414, January.
    9. Liu, Zhangxin (Frank) & Faff, Robert, 2017. "Hitting SKEW for SIX," Economic Modelling, Elsevier, vol. 64(C), pages 449-464.
    10. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    11. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    12. Fassas, Athanasios P. & Siriopoulos, Costas, 2021. "Implied volatility indices – A review," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 303-329.
    13. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
    14. Psaradellis, Ioannis & Sermpinis, Georgios, 2016. "Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1268-1283.
    15. Jin E. Zhang & Jinghong Shu & Menachem Brenner, 2010. "The new market for volatility trading," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(9), pages 809-833, September.
    16. Jiling Cao & Xinfeng Ruan & Wenjun Zhang, 2020. "Inferring information from the S&P 500, CBOE VIX, and CBOE SKEW indices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 945-973, June.
    17. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    18. Mauro Costantini & Jesus Crespo Cuaresma & Jaroslava Hlouskova, 2016. "Forecasting Errors, Directional Accuracy and Profitability of Currency Trading: The Case of EUR/USD Exchange Rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 652-668, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ballestra, Luca Vincenzo & Guizzardi, Andrea & Palladini, Fabio, 2019. "Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1250-1262.
    2. Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014. "Modeling and predicting the CBOE market volatility index," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
    3. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    4. Taylor, Nick, 2019. "Forecasting returns in the VIX futures market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1193-1210.
    5. Pan, Ging-Ginq & Shiu, Yung-Ming & Wu, Tu-Cheng, 2024. "Extrapolation and option-implied kurtosis in volatility forecasting," Pacific-Basin Finance Journal, Elsevier, vol. 84(C).
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Psaradellis, Ioannis & Sermpinis, Georgios, 2016. "Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1268-1283.
    8. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    9. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    10. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    11. Yuru Sun & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Gael M. Martin, 2023. "Optimal probabilistic forecasts for risk management," Papers 2303.01651, arXiv.org.
    12. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    13. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    14. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    15. Pan, Ging-Ginq & Shiu, Yung-Ming & Wu, Tu-Cheng, 2022. "Can risk-neutral skewness and kurtosis subsume the information content of historical jumps?," Journal of Financial Markets, Elsevier, vol. 57(C).
    16. Konstantinidi, Eirini & Skiadopoulos, George, 2016. "How does the market variance risk premium vary over time? Evidence from S&P 500 variance swap investment returns," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 62-75.
    17. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    18. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
    19. Byun, Suk Joon & Kim, Jun Sik, 2013. "The information content of risk-neutral skewness for volatility forecasting," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 142-161.
    20. Konstantinidi, Eirini & Skiadopoulos, George, 2016. "How does the market variance risk premium vary over time? Evidence from S&P 500 variance swap investment returns," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 62-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:3:p:40-814:d:1478296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.