IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i2p21-403d1399388.html
   My bibliography  Save this article

Forecasting Daily Activity Plans of a Synthetic Population in an Upcoming District

Author

Listed:
  • Rachid Belaroussi

    (COSYS-GRETTIA, University Gustave Eiffel, F-77447 Marne-la-Vallée, France)

  • Younes Delhoum

    (COSYS-GRETTIA, University Gustave Eiffel, F-77447 Marne-la-Vallée, France)

Abstract

The modeling and simulation of societies requires identifying the spatio-temporal patterns of people’s activities. In urban areas, it is key to effective urban planning; it can be used in real estate projects to predict their future impacts on behavior in surrounding accessible areas. The work presented here aims at developing a method for making it possible to model the potential visits of the various equipment and public spaces of a district under construction by mobilizing data from census at the regional level and the layout of shops and activities as defined by the real estate project. This agent-based model takes into account the flow of external visitors, estimated realistically based on the pre-occupancy movements in the surrounding cities. To perform this evaluation, we implemented a multi-agent-based simulation model (MATSim) at the regional scale and at the scale of the future district. In its design, the district is physically open to the outside and will offer services that will be of interest to other residents or users of the surrounding area. To know the effect of this opening on a potential transit of visitors in the district, as well as the places of interest for the inhabitants, it is necessary to predict the flows of micro-trips within the district once it is built. We propose an attraction model to estimate the daily activities and trips of the future residents based on the attractiveness of the facilities and the urbanistic potential of the blocks. This transportation model is articulated in conjunction with the regional model in order to establish the flow of outgoing and incoming visitors. The impacts of the future district on the mobility of its surrounding area is deduced by implementing a simulation in the projection situation.

Suggested Citation

  • Rachid Belaroussi & Younes Delhoum, 2024. "Forecasting Daily Activity Plans of a Synthetic Population in an Upcoming District," Forecasting, MDPI, vol. 6(2), pages 1-26, May.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:2:p:21-403:d:1399388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/2/21/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/2/21/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robin Lovelace & Mark Birkin & Dimitris Ballas & Eveline van Leeuwen, 2015. "Evaluating the Performance of Iterative Proportional Fitting for Spatial Microsimulation: New Tests for an Established Technique," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-21.
    2. Gärling, Tommy & Kwan, Mei-Po & Golledge, Reginald G., 1994. "Computational-process modelling of household activity scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 355-364, October.
    3. Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
    4. Peijun Ye & Xiaolin Hu & Yong Yuan & Fei-Yue Wang, 2017. "Population Synthesis Based on Joint Distribution Inference Without Disaggregate Samples," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(4), pages 1-16.
    5. Templ, Matthias & Meindl, Bernhard & Kowarik, Alexander & Dupriez, Olivier, 2017. "Simulation of Synthetic Complex Data: The R Package simPop," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i10).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdoul Razac Sané & Pierre-Olivier Vandanjon & Rachid Belaroussi & Pierre Hankach, 2025. "A comprehensive investigation of variational auto-encoders for population synthesis," Journal of Computational Social Science, Springer, vol. 8(1), pages 1-34, February.
    2. Yasmin, Farhana & Morency, Catherine & Roorda, Matthew J., 2015. "Assessment of spatial transferability of an activity-based model, TASHA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 200-213.
    3. Habib, Khandker Nurul & Sasic, Ana & Weis, Claude & Axhausen, Kay, 2013. "Investigating the nonlinear relationship between transportation system performance and daily activity–travel scheduling behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 342-357.
    4. Arentze, Theo & Timmermans, Harry, 2007. "Parametric action decision trees: Incorporating continuous attribute variables into rule-based models of discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 772-783, August.
    5. Steven Farber & Tijs Neutens & Juan-Antonio Carrasco & Carolina Rojas, 2014. "Social Interaction Potential and the Spatial Distribution of Face-to-Face Social Interactions," Environment and Planning B, , vol. 41(6), pages 960-976, December.
    6. Ali Najmi & Taha H. Rashidi & Eric J. Miller, 2019. "A novel approach for systematically calibrating transport planning model systems," Transportation, Springer, vol. 46(5), pages 1915-1950, October.
    7. Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
    8. Gärling, Tommy & Eek, Daniel & Loukopoulos, Peter & Fujii, Satoshi & Johansson-Stenman, Olof & Kitamura, Ryuichi & Pendyala, Ram & Vilhelmson, Bertil, 2002. "A conceptual analysis of the impact of travel demand management on private car use," Transport Policy, Elsevier, vol. 9(1), pages 59-70, January.
    9. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    10. Joshua Wang & Eric J Miller, 2014. "A Prism-Based and Gap-Based Approach to Shopping Location Choice," Environment and Planning B, , vol. 41(6), pages 977-1005, December.
    11. Ming Lee & Michael McNally, 2006. "An empirical investigation on the dynamic processes of activity scheduling and trip chaining," Transportation, Springer, vol. 33(6), pages 553-565, November.
    12. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    13. Tommy Gärling & Robert Gillholm & William Montgomery, 1999. "The role of anticipated time pressure in activity scheduling," Transportation, Springer, vol. 26(2), pages 173-191, May.
    14. Mohammadian, Abolfazl & Doherty, Sean T., 2006. "Modeling activity scheduling time horizon: Duration of time between planning and execution of pre-planned activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 475-490, July.
    15. Lee, Ming S. & McNally, Michael G., 2003. "On the Structure of Weekly Activity/Travel Patterns," University of California Transportation Center, Working Papers qt15w464vp, University of California Transportation Center.
    16. Mostafa, Toka S. & Roorda, Matthew J., 2016. "Modelling Freight Outsourcing Decisions," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319306, Transportation Research Forum.
    17. Trond Husby & Olga Ivanova & Mark Thissen, 2018. "Simulating the Joint Distribution of Individuals, Households and Dwellings in Small Areas," International Journal of Microsimulation, International Microsimulation Association, vol. 11(2), pages 169-190.
    18. Kirill Mueller & Kay W. Axhausen, 2011. "Hierarchical IPF: Generating a synthetic population for Switzerland," ERSA conference papers ersa11p305, European Regional Science Association.
    19. Spooner, Fiona & Abrams, Jesse F. & Morrissey, Karyn & Shaddick, Gavin & Batty, Michael & Milton, Richard & Dennett, Adam & Lomax, Nik & Malleson, Nick & Nelissen, Natalie & Coleman, Alex & Nur, Jamil, 2021. "A dynamic microsimulation model for epidemics," Social Science & Medicine, Elsevier, vol. 291(C).
    20. Ken Hidaka & Toshiyuki Yamamoto, 2021. "Activity Scheduling Behavior of the Visitors to an Outdoor Recreational Facility Using GPS Data," Sustainability, MDPI, vol. 13(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:2:p:21-403:d:1399388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.