IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v4y2022i4p43-797d929320.html
   My bibliography  Save this article

Supervised and Unsupervised Machine Learning Algorithms for Forecasting the Fracture Location in Dissimilar Friction-Stir-Welded Joints

Author

Listed:
  • Akshansh Mishra

    (School of Industrial and Information Engineering, Politecnico Di Milano, 20156 Milan, Italy)

  • Anish Dasgupta

    (Artificial Intelligence Analytics, Cognizant Technology Solutions, Kolkata 700106, India)

Abstract

Artificial-intelligence-based algorithms are used in manufacturing to automate difficult activities and discover workflow or process patterns that had never been noticed before. Recent studies deal with the forecasting of the fracture location in dissimilar friction-stir-welded AA5754–C11000 alloys. Four types of supervised machine-learning-based classification algorithms i.e., decision tree, logistic classification, random forest, and AdaBoost were implemented. Additionally, in the present work, for the first time, a neurobiological-based unsupervised machine learning algorithm, i.e., self-organizing map (SOM) neural network, is implemented for determining the fracture location in dissimilar friction-stir-welded AA5754–C11000 alloys. Tool shoulder diameter (mm), tool rotational speed (RPM), and tool traverse speed (mm/min) are input parameters, while the fracture location, i.e., whether the specimen’s fracture is in the thermo-mechanically affected zone (TMAZ) of copper, or if it fractures in the TMAZ of aluminium. The results show that out of all implemented algorithms, the SOM algorithm is able to predict the fracture location with the highest accuracy of 96.92%.

Suggested Citation

  • Akshansh Mishra & Anish Dasgupta, 2022. "Supervised and Unsupervised Machine Learning Algorithms for Forecasting the Fracture Location in Dissimilar Friction-Stir-Welded Joints," Forecasting, MDPI, vol. 4(4), pages 1-11, September.
  • Handle: RePEc:gam:jforec:v:4:y:2022:i:4:p:43-797:d:929320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/4/4/43/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/4/4/43/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    2. Peng Zhan & Shaokun Wang & Jun Wang & Leigang Qu & Kun Wang & Yupeng Hu & Xueqing Li, 2021. "Temporal anomaly detection on IIoT-enabled manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1669-1678, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rishan Adha & Cheng-Yih Hong & Somya Agrawal & Li-Hua Li, 2023. "ICT, carbon emissions, climate change, and energy demand nexus: The potential benefit of digitalization in Taiwan," Energy & Environment, , vol. 34(5), pages 1619-1638, August.
    2. Ambreen Shafqat & Qurat ul An Sabir & Su-Fen Yang & Muhammad Aslam & Mohammed Albassam & Kashif Abbas, 2024. "Monitoring and Comparing Air and Green House Gases Emissions of Various Countries," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 621-644, September.
    3. Syamsiyatul Muzayyanah & Cheng-Yih Hong & Rishan Adha & Su-Fen Yang, 2023. "The Non-Linear Relationship between Air Pollution, Labor Insurance and Productivity: Multivariate Adaptive Regression Splines Approach," Sustainability, MDPI, vol. 15(12), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:4:y:2022:i:4:p:43-797:d:929320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.