IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p500-d73039.html
   My bibliography  Save this article

Greening the NetFPGA Reference Router

Author

Listed:
  • Feng Guo

    (School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
    These authors contributed equally to this work.)

  • Xiaojun Wang

    (School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
    These authors contributed equally to this work.)

  • Mei Song

    (School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Yifei Wei

    (School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Olga Ormond

    (School of Electronic Engineering, Dublin City University, Dublin 9, Ireland)

  • Martin Collier

    (School of Electronic Engineering, Dublin City University, Dublin 9, Ireland)

Abstract

Energy efficiency is an important criterion in the design of next generation networks for both economic and environmental concerns. This paper presents an energy-efficient router that is able to dynamically adapt its routing capability in response to real-time traffic load, achieving energy proportional routing. The NetFPGA reference router, which operates at one of two frequencies (125 MHz or 62.5 MHz), requires a board reset to switch frequencies. We have modified the reference router to allow dynamic switching among five operating frequencies. Experiments with real traces indicate that, compared to the reference router, a 10% power reduction can be achieved through dynamic frequency scaling. When the router is further modified to support green traffic engineering and Ethernet port shut-down, power consumption can be reduced by 46% while maintaining the required quality of service. This allows the router to meet the instantaneous performance requirements while minimizing power dissipation. Similar results can be expected when these general power-saving principles are applied in future commercial routers.

Suggested Citation

  • Feng Guo & Xiaojun Wang & Mei Song & Yifei Wei & Olga Ormond & Martin Collier, 2016. "Greening the NetFPGA Reference Router," Energies, MDPI, vol. 9(7), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:500-:d:73039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moyer, Jonathan D. & Hughes, Barry B., 2012. "ICTs: Do they contribute to increased carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 919-931.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    2. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Jiajia Guo & Xin Shen, 2024. "Does Digitalization Facilitate Environmental Governance Performance? An Empirical Analysis Based on the PLS-SEM Model in China," Sustainability, MDPI, vol. 16(7), pages 1-19, April.
    4. Hui Fang & Chunyu Jiang & Tufail Hussain & Xiaoye Zhang & Qixin Huo, 2022. "Input Digitization of the Manufacturing Industry and Carbon Emission Intensity Based on Testing the World and Developing Countries," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    5. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    6. Nan Li & Beibei Shi & Rong Kang, 2023. "Analysis of the Coupling Effect and Space-Time Difference between China’s Digital Economy Development and Carbon Emissions Reduction," IJERPH, MDPI, vol. 20(1), pages 1-25, January.
    7. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    8. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    9. Zihanxin Li & Nuoyan Li & Huwei Wen, 2021. "Digital Economy and Environmental Quality: Evidence from 217 Cities in China," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    10. Luyang Tang & Bangke Lu & Tianhai Tian, 2023. "The Effect of Input Digitalization on Carbon Emission Intensity: An Empirical Analysis Based on China’s Manufacturing," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    11. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    12. Avom, Désiré & Nkengfack, Hilaire & Fotio, Hervé Kaffo & Totouom, Armand, 2020. "ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    13. Bo Li & Jing Liu & Qian Liu & Muhammad Mohiuddin, 2022. "The Effects of Broadband Infrastructure on Carbon Emission Efficiency of Resource-Based Cities in China: A Quasi-Natural Experiment from the “Broadband China” Pilot Policy," IJERPH, MDPI, vol. 19(11), pages 1-27, May.
    14. Asif Khan & Wu Ximei, 2022. "Digital Economy and Environmental Sustainability: Do Information Communication and Technology (ICT) and Economic Complexity Matter?," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    15. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    16. Khan, Yasir & Hassan, Taimoor & Guiqin, Huang & Nabi, Ghulam, 2023. "Analyzing the impact of natural resources and rule of law on sustainable environment: A proposed policy framework for BRICS economies," Resources Policy, Elsevier, vol. 86(PA).
    17. Lee, Chien-Chiang & Chen, Mei-Ping & Yuan, Zihao, 2023. "Is information and communication technology a driver for renewable energy?," Energy Economics, Elsevier, vol. 124(C).
    18. Youmeng Wu & Hao Sun & Hongliang Sun & Chi Xie, 2022. "Impact of Public Environmental Concerns on the Digital Transformation of Heavily Polluting Enterprises," IJERPH, MDPI, vol. 20(1), pages 1-19, December.
    19. Jing Wang & Yubing Xu, 2021. "Internet Usage, Human Capital and CO 2 Emissions: A Global Perspective," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    20. Chris Belmert Milindi & Roula Inglesi-Lotz, 2023. "Impact of technological progress on carbon emissions in different country income groups," Energy & Environment, , vol. 34(5), pages 1348-1382, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:500-:d:73039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.