IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i6p414-d70923.html
   My bibliography  Save this article

Numerical Modeling of Variable Fluid Injection-Rate Modes on Fracturing Network Evolution in Naturally Fractured Formations

Author

Listed:
  • Yu Wang

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China)

  • Xiao Li

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China)

  • Bo Zhang

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China)

Abstract

In this study, variable injection-rate technology was numerically investigated in a pre-existing discrete fracture network (DFN) formation, the Tarim Basin in China. A flow-stress-damage (FSD) coupling model has been used in an initial attempt towards how reservoir response to variable injection-rates at different hydraulic fracturing stages. The established numerical model simultaneously considered the macroscopic and microscopic heterogeneity characteristics. Eight numerical cases were studied. Four cases were used to study the variable injection-rate technology, and the other four cases were applied for a constant injection-rate in order to compare with the variable injection-rate technology. The simulation results show that the variable injection-rate technology is a potentially good method to a form complex fracturing networks. The hydraulic fracturing effectiveness when increasing the injection-rate at each stage is the best, also, the total injected fluid is at a minimum. At the initial stage, many under-fracturing points appear around the wellbore with a relatively low injection-rate; the sudden increase of injection rate drives the dynamic propagation of hydraulic fractures along many branching fracturing points. However, the case with decreasing injection rate is the worst. By comparing with constant injection-rate cases, the hydraulic fracturing effectiveness with variable flow rate technology is generally better than those with constant injection-rate technology. This work strongly links the production technology and hydraulic fracturing effectiveness evaluation and aids in the understanding and optimization of hydraulic fracturing simulations in naturally fractured reservoirs.

Suggested Citation

  • Yu Wang & Xiao Li & Bo Zhang, 2016. "Numerical Modeling of Variable Fluid Injection-Rate Modes on Fracturing Network Evolution in Naturally Fractured Formations," Energies, MDPI, vol. 9(6), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:414-:d:70923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/6/414/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/6/414/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Li & Jianye Mou & Shicheng Zhang & Xinfang Ma & Cong Xiao & Haoqing Fang, 2022. "Numerical Investigation of Interaction Mechanism between Hydraulic Fracture and Natural Karst Cave Based on Seepage-Stress-Damage Coupled Model," Energies, MDPI, vol. 15(15), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:414-:d:70923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.