IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p183-d65432.html
   My bibliography  Save this article

Thermal Stability of Hexamethyldisiloxane (MM) for High-Temperature Organic Rankine Cycle (ORC)

Author

Listed:
  • Markus Preißinger

    (Institute of Engineering Thermodynamics (LTTT), Center of Energy Technology (ZET), University of Bayreuth, Bayreuth 95440, Germany)

  • Dieter Brüggemann

    (Institute of Engineering Thermodynamics (LTTT), Center of Energy Technology (ZET), University of Bayreuth, Bayreuth 95440, Germany)

Abstract

The design of efficient Organic Rankine Cycle (ORC) units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM) is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

Suggested Citation

  • Markus Preißinger & Dieter Brüggemann, 2016. "Thermal Stability of Hexamethyldisiloxane (MM) for High-Temperature Organic Rankine Cycle (ORC)," Energies, MDPI, vol. 9(3), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:183-:d:65432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benato, A. & Kærn, M.R. & Pierobon, L. & Stoppato, A. & Haglind, F., 2015. "Analysis of hot spots in boilers of organic Rankine cycle units during transient operation," Applied Energy, Elsevier, vol. 151(C), pages 119-131.
    2. Jahedul Islam Chowdhury & Bao Kha Nguyen & David Thornhill, 2015. "Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique," Energies, MDPI, vol. 8(12), pages 1-20, December.
    3. Theresa Weith & Florian Heberle & Markus Preißinger & Dieter Brüggemann, 2014. "Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation," Energies, MDPI, vol. 7(9), pages 1-18, August.
    4. Yang, Fubin & Zhang, Hongguang & Bei, Chen & Song, Songsong & Wang, Enhua, 2015. "Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator," Energy, Elsevier, vol. 91(C), pages 128-141.
    5. Kai Yang & Hongguang Zhang & Songsong Song & Fubin Yang & Hao Liu & Guangyao Zhao & Jian Zhang & Baofeng Yao, 2014. "Effects of Degree of Superheat on the Running Performance of an Organic Rankine Cycle (ORC) Waste Heat Recovery System for Diesel Engines under Various Operating Conditions," Energies, MDPI, vol. 7(4), pages 1-23, April.
    6. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    2. Zhuxian Liu & Zhong Wu & Yonghong Xu & Hongguang Zhang & Jian Zhang & Fubin Yang, 2022. "Performance Investigation of Single–Piston Free Piston Expander–Linear Generator with Multi–Parameter Based on Simulation Model," Energies, MDPI, vol. 15(23), pages 1-28, November.
    3. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    5. Chatzopoulou, Maria Anna & Lecompte, Steven & Paepe, Michel De & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Sung-Wei Hsu & Hsiao-Wei D. Chiang & Chih-Wei Yen, 2014. "Experimental Investigation of the Performance of a Hermetic Screw-Expander Organic Rankine Cycle," Energies, MDPI, vol. 7(9), pages 1-14, September.
    7. Ravi, Rajesh & Pachamuthu, Senthilkumar & Kasinathan, Padmanathan, 2020. "Computational and experimental investigation on effective utilization of waste heat from diesel engine exhaust using a fin protracted heat exchanger," Energy, Elsevier, vol. 200(C).
    8. Songsong Song & Hongguang Zhang & Rui Zhao & Fanxiao Meng & Hongda Liu & Jingfu Wang & Baofeng Yao, 2017. "Simulation and Performance Analysis of Organic Rankine Systems for Stationary Compressed Natural Gas Engine," Energies, MDPI, vol. 10(4), pages 1-23, April.
    9. Preißinger, Markus & Schwöbel, Johannes A.H. & Klamt, Andreas & Brüggemann, Dieter, 2017. "Multi-criteria evaluation of several million working fluids for waste heat recovery by means of Organic Rankine Cycle in passenger cars and heavy-duty trucks," Applied Energy, Elsevier, vol. 206(C), pages 887-899.
    10. Zhilong He & Tao Wang & Xiaolin Wang & Xueyuan Peng & Ziwen Xing, 2018. "Experimental Investigation into the Effect of Oil Injection on the Performance of a Variable Speed Twin-Screw Compressor," Energies, MDPI, vol. 11(6), pages 1-14, May.
    11. Roberto Pili & Hartmut Spliethoff & Christoph Wieland, 2017. "Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler," Energies, MDPI, vol. 10(4), pages 1-28, April.
    12. Pili, Roberto & Romagnoli, Alessandro & Jiménez-Arreola, Manuel & Spliethoff, Hartmut & Wieland, Christoph, 2019. "Simulation of Organic Rankine Cycle – Quasi-steady state vs dynamic approach for optimal economic performance," Energy, Elsevier, vol. 167(C), pages 619-640.
    13. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    14. Gallarini, Simone & Spinelli, Andrea & Lietti, Luca & Guardone, Alberto, 2023. "Thermal stability of linear siloxanes and their mixtures," Energy, Elsevier, vol. 278(C).
    15. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.
    16. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    18. Kim, SeLin & Choi, KyungWook & Lee, Kihyung & Kim, Kibum, 2016. "Evaluation of automotive waste heat recovery for various driving modes," Energy, Elsevier, vol. 106(C), pages 579-589.
    19. Tang, Hao & Wu, Huagen & Wang, Xiaolin & Xing, Ziwen, 2015. "Performance study of a twin-screw expander used in a geothermal organic Rankine cycle power generator," Energy, Elsevier, vol. 90(P1), pages 631-642.
    20. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:183-:d:65432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.