IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p793-d79796.html
   My bibliography  Save this article

Switching Control of Wind Turbine Sub-Controllers Based on an Active Disturbance Rejection Technique

Author

Listed:
  • Yancai Xiao

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Yi Hong

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Xiuhai Chen

    (State Grid Beijing Haidian Electric Power Supply Company, Beijing 100086, China)

  • Wenjian Huo

    (School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)

Abstract

Wind power generation systems require complex control systems with multiple working conditions and multiple controllers. Under different operating conditions, switching without disturbancebetweenthesub-controllersplaysacriticalroleinensuringthestabilityofpowersystems. The sub-controllers of two typical cases in the permanent magnet direct drive (PMDD) wind turbine running process are studied, one is the proportional integral (PI) controller in the maximum power points tracking (MPPT) stage, the other is the fuzzy pitch angle controller in the constant power stage. The switching strategy of the two sub-controllers is the emphasis in this research. Based on the active disturbance rejection control (ADRC), the switching mode of the sub-controllers is proposed, which can effectively restrain the sudden changes of the rotor current during the switching process, and improve the quality of power generation. The feasibility and effectiveness of the sub-controller switching strategy is verified by Matlab/Simulink simulation for a 2 MW PMDD wind turbine.

Suggested Citation

  • Yancai Xiao & Yi Hong & Xiuhai Chen & Wenjian Huo, 2016. "Switching Control of Wind Turbine Sub-Controllers Based on an Active Disturbance Rejection Technique," Energies, MDPI, vol. 9(10), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:793-:d:79796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yancai Xiao & Tieling Zhang & Zeyu Ding & Chunya Li, 2016. "The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters," Energies, MDPI, vol. 9(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Rodriguez-Rosa & Ismael Payo-Gutierrez & Fernando J. Castillo-Garcia & Antonio Gonzalez-Rodriguez & Sergio Perez-Juarez, 2017. "Improving Energy Efficiency of an Autonomous Bicycle with Adaptive Controller Design," Sustainability, MDPI, vol. 9(5), pages 1-16, May.
    2. Md Mijanur Rahman & A. Hasib Chowdhury & Md Alamgir Hossain, 2017. "Improved Load Frequency Control Using a Fast Acting Active Disturbance Rejection Controller," Energies, MDPI, vol. 10(11), pages 1-18, October.
    3. Bo Liu & Hongqi Ben & Xiaobing Zhang, 2018. "Large-Signal Stabilization of Three-Phase VSR with Constant Power Load," Energies, MDPI, vol. 11(7), pages 1-14, July.
    4. Srikanth Bashetty & Joaquin I. Guillamon & Shanmukha S. Mutnuri & Selahattin Ozcelik, 2020. "Design of a Robust Adaptive Controller for the Pitch and Torque Control of Wind Turbines," Energies, MDPI, vol. 13(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    2. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    3. Qixiang Yan & Ibrahim Adamu Tasiu & Hong Chen & Yuting Zhang & Siqi Wu & Zhigang Liu, 2019. "Design and Hardware-in-the-Loop Implementation of Fuzzy-Based Proportional-Integral Control for the Traction Line-Side Converter of a High-Speed Train," Energies, MDPI, vol. 12(21), pages 1-24, October.
    4. Xing Liu & Jinhua Du & Deliang Liang, 2016. "Analysis and Speed Ripple Mitigation of a Space Vector Pulse Width Modulation-Based Permanent Magnet Synchronous Motor with a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 9(11), pages 1-15, November.
    5. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    6. Giovanni Pau & Mario Collotta & Vincenzo Maniscalco, 2017. "Bluetooth 5 Energy Management through a Fuzzy-PSO Solution for Mobile Devices of Internet of Things," Energies, MDPI, vol. 10(7), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:793-:d:79796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.