IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i9p10487-10503d56182.html
   My bibliography  Save this article

Eicosapentaenoic Acid from Porphyridium Cruentum : Increasing Growth and Productivity of Microalgae for Pharmaceutical Products

Author

Listed:
  • Maryam Asgharpour

    (Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA)

  • Brigitte Rodgers

    (Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA)

  • Jamie A. Hestekin

    (Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA)

Abstract

An alternative source of eicosapentaenoic acid (EPA) or omega-3 could be microalgae lipids instead of fish oils. However, EPA and lipid contents extracted from microalgae vary at different growth conditions. Therefore, it is of paramount importance to optimize the growth conditions of microalgae to maximize EPA production. In this paper, the effects of temperature (16 °C and 20 °C), light intensity (140 µE m −2 s −1 and 180 µE m −2 s −1 ) and nitrate level (0.075, 0.3, 0.5, and 0.7 g/L) on the cell growth, lipid productivity, and omega-6/omega-3 ratio of Porphyridium cruentum , one of the most promising oil-rich species of microalgae, are investigated. The ratio of the fatty acids with omega-6 and omega-3 groups at various growth conditions were compared, since an appropriate proportion of ω-6 (arachidonic acid (ARA)) to ω-3 (EPA) is vital for healthy nutrition. Lower EPA production and consequently a higher ARA/EPA ratio occurred when 5% CO 2 /air was utilized as CO 2 supplementation compared to pure CO 2 . The highest EPA (13.08% (w/w) of total fatty acids) and biomass productivity (143 mg L −1 day −1 ) was achieved at 140 µE m −2 s −1 , 20 °C, and 0.3 g/L nitrate, while lipid content was the lowest (0.5% w/w) at this condition. The optimal condition with minimum ARA/EPA ratio (2.5) was identified at 20 °C, 140 µE m −2 s −1 , and 0.5 g/L nitrate concentration.

Suggested Citation

  • Maryam Asgharpour & Brigitte Rodgers & Jamie A. Hestekin, 2015. "Eicosapentaenoic Acid from Porphyridium Cruentum : Increasing Growth and Productivity of Microalgae for Pharmaceutical Products," Energies, MDPI, vol. 8(9), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:10487-10503:d:56182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/9/10487/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/9/10487/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humeyra B. Ulusoy Erol & Mariana Lara Menegazzo & Heather Sandefur & Emily Gottberg & Jessica Vaden & Maryam Asgharpour & Christa N. Hestekin & Jamie A. Hestekin, 2020. "Porphyridium cruentum Grown in Ultra-Filtered Swine Wastewater and Its Effects on Microalgae Growth Productivity and Fatty Acid Composition," Energies, MDPI, vol. 13(12), pages 1-9, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    2. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    3. Baral, Nabin & Rabotyagov, Sergey, 2017. "How much are wood-based cellulosic biofuels worth in the Pacific Northwest? Ex-ante and ex-post analysis of local people's willingness to pay," Forest Policy and Economics, Elsevier, vol. 83(C), pages 99-106.
    4. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    5. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    6. Duan, Pei-Gao & Yang, Shi-Kun & Xu, Yu-Ping & Wang, Feng & Zhao, Dan & Weng, Yu-Jing & Shi, Xian-Lei, 2018. "Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass," Energy, Elsevier, vol. 155(C), pages 734-745.
    7. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    8. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    9. Yuan, Hao & Zhang, Xinru & Jiang, Zeyi & Wang, Xinyu & Wang, Yi & Cao, Limei & Zhang, Xinxin, 2020. "Effect of light spectra on microalgal biofilm: Cell growth, photosynthetic property, and main organic composition," Renewable Energy, Elsevier, vol. 157(C), pages 83-89.
    10. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    11. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    12. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    13. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    15. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    16. Kim, Tae-Hyoung & Lee, Kyungho & Oh, Baek-Rock & Lee, Mi-Eun & Seo, Minji & Li, Sheng & Kim, Jae-Kon & Choi, Minkee & Chang, Yong Keun, 2021. "A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 165(P1), pages 481-490.
    17. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    18. Ennaceri, Houda & Fischer, Kristina & Schulze, Agnes & Moheimani, Navid Reza, 2022. "Membrane fouling control for sustainable microalgal biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    20. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:10487-10503:d:56182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.