IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i12p12382-13575d59677.html
   My bibliography  Save this article

On the Implementation of Variable Speed in Pump-Turbine Units Providing Primary and Secondary Load-Frequency Control in Generating Mode

Author

Listed:
  • José Ignacio Sarasúa

    (Department of Hydraulic, Energy and Environmental Engineering, School of Civil Engineering, Technical University of Madrid, C/Profesor Aranguren, Madrid 28040, Spain
    These authors contributed equally to this work.)

  • Juan Ignacio Pérez-Díaz

    (Department of Hydraulic, Energy and Environmental Engineering, School of Civil Engineering, Technical University of Madrid, C/Profesor Aranguren, Madrid 28040, Spain
    These authors contributed equally to this work.)

  • Blanca Torres Vara

    (Department of Hydraulic, Energy and Environmental Engineering, School of Civil Engineering, Technical University of Madrid, C/Profesor Aranguren, Madrid 28040, Spain)

Abstract

This paper analyses different control strategies for the speed control loop of a variable-speed pump-turbine unit equipped with a doubly fed induction generator, operating in generating mode in an isolated power system with high penetration of intermittent renewable energy. The control strategies are evaluated and compared to each other in terms of the amount of water discharged through the pump-turbine and of the wicket gates fatigue while providing primary and secondary load-frequency control. The influence of the penstock length and the initial operating point on the performance of each control strategy is studied in detail. For these purposes, several simulations have been performed with a suitable dynamic model of the pumped-storage hydropower plant and the power system. The results of the paper indicate that a proper control strategy would consist in updating the reference speed according to the power generation schedule and keeping it constant within each scheduling period (typically 1 h).

Suggested Citation

  • José Ignacio Sarasúa & Juan Ignacio Pérez-Díaz & Blanca Torres Vara, 2015. "On the Implementation of Variable Speed in Pump-Turbine Units Providing Primary and Secondary Load-Frequency Control in Generating Mode," Energies, MDPI, vol. 8(12), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12382-13575:d:59677
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/12/12382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/12/12382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    2. Kaldellis, J. K. & Kavadias, K. A., 2001. "Optimal wind-hydro solution for Aegean Sea islands' electricity-demand fulfilment," Applied Energy, Elsevier, vol. 70(4), pages 333-354, December.
    3. Anagnostopoulos, J.S. & Papantonis, D.E., 2008. "Simulation and size optimization of a pumped–storage power plant for the recovery of wind-farms rejected energy," Renewable Energy, Elsevier, vol. 33(7), pages 1685-1694.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    2. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    2. Martínez-Lucas, Guillermo & Sarasúa, José Ignacio & Sánchez-Fernández, José Ángel & Wilhelmi, José Román, 2016. "Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel," Renewable Energy, Elsevier, vol. 90(C), pages 362-376.
    3. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    4. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    5. Tan, Qiaofeng & Wen, Xin & Sun, Yuanliang & Lei, Xiaohui & Wang, Zhenni & Qin, Guanghua, 2021. "Evaluation of the risk and benefit of the complementary operation of the large wind-photovoltaic-hydropower system considering forecast uncertainty," Applied Energy, Elsevier, vol. 285(C).
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    7. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    8. Kapsali, M. & Anagnostopoulos, J.S. & Kaldellis, J.K., 2012. "Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives," Applied Energy, Elsevier, vol. 99(C), pages 430-444.
    9. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    10. Juntunen, Jouni K. & Martiskainen, Mari, 2021. "Improving understanding of energy autonomy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Zafirakis, D. & Kaldellis, J.K., 2009. "Economic evaluation of the dual mode CAES solution for increased wind energy contribution in autonomous island networks," Energy Policy, Elsevier, vol. 37(5), pages 1958-1969, May.
    12. Olukunle O. Owolabi & Kathryn Lawson & Sanhita Sengupta & Yingsi Huang & Lan Wang & Chaopeng Shen & Mila Getmansky Sherman & Deborah A. Sunter, 2022. "A Robust Statistical Analysis of the Role of Hydropower on the System Electricity Price and Price Volatility," Papers 2203.02089, arXiv.org.
    13. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    14. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    15. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    16. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    17. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    18. Julia Merino & Carlos Veganzones & Jose A. Sanchez & Sergio Martinez & Carlos A. Platero, 2012. "Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands," Energies, MDPI, vol. 5(7), pages 1-19, July.
    19. Shabani, Masoume & Mahmoudimehr, Javad, 2019. "Influence of climatological data records on design of a standalone hybrid PV-hydroelectric power system," Renewable Energy, Elsevier, vol. 141(C), pages 181-194.
    20. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:12:p:12382-13575:d:59677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.