IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i10p10958-10970d56584.html
   My bibliography  Save this article

Enhancing Thermoelectric Properties of Si 80 Ge 20 Alloys Utilizing the Decomposition of NaBH 4 in the Spark Plasma Sintering Process

Author

Listed:
  • Ali Lahwal

    (Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA)

  • Xiaoyu Zeng

    (Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA)

  • Sriparna Bhattacharya

    (Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
    Clemson Nanomaterials Center, and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29625, USA)

  • Menghan Zhou

    (Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA)

  • Dale Hitchcock

    (Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA)

  • Mehmet Karakaya

    (Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
    Clemson Nanomaterials Center, and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29625, USA)

  • Jian He

    (Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA)

  • Apparao M. Rao

    (Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
    Clemson Nanomaterials Center, and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29625, USA)

  • Terry M. Tritt

    (Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
    Department of Materials Science & Engineering, Clemson University, Clemson, SC 29634, USA)

Abstract

The thermoelectric properties of spark plasma sintered, ball-milled, p -type Si 80 Ge 20 -(NaBH 4 ) x (x = 0.7,1.7 and 2.7), and Si 80 Ge 20 B 1.7-y -(NaBH 4 ) y (y = 0.2 and 0.7) samples have been investigated from 30 K to 1100 K. These samples were prepared by spark plasma sintering of an admixture of Si , Ge , B and NaBH 4 powders. In particular, the degasing process during the spark plasma sintering process, the combined results of X-ray powder diffraction, Raman spectroscopy, Hall coefficient, electrical resistivity, and Seebeck coefficient measurements indicated that NaBH 4 decomposed into Na , B , Na 2 B 29 , and H 2 during the spark plasma sintering process; Na and B were doped into the SiGe lattice, resulting in favorable changes in the carrier concentration and the power factor. In addition, the ball milling process and the formation of Na 2 B 29 nanoparticles resulted in stronger grain boundary scattering of heat-carrying phonons, leading to a reduced lattice thermal conductivity. As a result, a significant improvement in the figure of merit ZT (60%) was attained in p -type Si 80 Ge 20 -(NaBH 4 ) 1.7 and Si 80 Ge 20 -B 1.5 (NaBH 4 ) 0.7 at 1100 K as compared to the p -type B-doped Si 80 Ge 20 material used in the NASA’s radioactive thermoelectric generators. This single-step “doping-nanostructuring” procedure can possibly be applied to other thermoelectric materials.

Suggested Citation

  • Ali Lahwal & Xiaoyu Zeng & Sriparna Bhattacharya & Menghan Zhou & Dale Hitchcock & Mehmet Karakaya & Jian He & Apparao M. Rao & Terry M. Tritt, 2015. "Enhancing Thermoelectric Properties of Si 80 Ge 20 Alloys Utilizing the Decomposition of NaBH 4 in the Spark Plasma Sintering Process," Energies, MDPI, vol. 8(10), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:10958-10970:d:56584
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/10/10958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/10/10958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rama Venkatasubramanian & Edward Siivola & Thomas Colpitts & Brooks O'Quinn, 2001. "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, Nature, vol. 413(6856), pages 597-602, October.
    2. Allon I. Hochbaum & Renkun Chen & Raul Diaz Delgado & Wenjie Liang & Erik C. Garnett & Mark Najarian & Arun Majumdar & Peidong Yang, 2008. "Enhanced thermoelectric performance of rough silicon nanowires," Nature, Nature, vol. 451(7175), pages 163-167, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    2. Kunlin Cheng & Yu Feng & Chuanwen Lv & Silong Zhang & Jiang Qin & Wen Bao, 2017. "Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
    3. Sharma, Vaishali & Kagdada, Hardik L. & Jha, Prafulla K., 2020. "Four-fold enhancement in the thermoelectric power factor of germanium selenide monolayer by adsorption of graphene quantum dot," Energy, Elsevier, vol. 196(C).
    4. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Dey, Abhijit & Bajpai, Om Prakash & Sikder, Arun K. & Chattopadhyay, Santanu & Shafeeuulla Khan, Md Abdul, 2016. "Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: A proficient move towards waste energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 653-671.
    6. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    7. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    8. Seunggen Yang & Kyoungah Cho & Sangsig Kim, 2020. "Enhanced Thermoelectric Characteristics of Ag 2 Se Nanoparticle Thin Films by Embedding Silicon Nanowires," Energies, MDPI, vol. 13(12), pages 1-10, June.
    9. Gou, Xiaolong & Xiao, Heng & Yang, Suwen, 2010. "Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system," Applied Energy, Elsevier, vol. 87(10), pages 3131-3136, October.
    10. Su, Guozhen & Zhang, Yanchao & Cai, Ling & Su, Shanhe & Chen, Jincan, 2015. "Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons," Energy, Elsevier, vol. 90(P2), pages 1842-1847.
    11. Guo, Lukai & Wang, Hao, 2022. "Non-intrusive movable energy harvesting devices: Materials, designs, and their prospective uses on transportation infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Martín-González, Marisol & Caballero-Calero, O. & Díaz-Chao, P., 2013. "Nanoengineering thermoelectrics for 21st century: Energy harvesting and other trends in the field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 288-305.
    13. Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
    14. Pan, Yuzhuo & Lin, Bihong & Chen, Jincan, 2007. "Performance analysis and parametric optimal design of an irreversible multi-couple thermoelectric refrigerator under various operating conditions," Applied Energy, Elsevier, vol. 84(9), pages 882-892, September.
    15. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    16. Igor Burmistrov & Rita Khanna & Nikolay Gorshkov & Nikolay Kiselev & Denis Artyukhov & Elena Boychenko & Andrey Yudin & Yuri Konyukhov & Maksim Kravchenko & Alexander Gorokhovsky & Denis Kuznetsov, 2022. "Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    17. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    19. Yuto Uematsu & Takafumi Ishibe & Takaaki Mano & Akihiro Ohtake & Hideki T. Miyazaki & Takeshi Kasaya & Yoshiaki Nakamura, 2024. "Anomalous enhancement of thermoelectric power factor in multiple two-dimensional electron gas system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Alessandro Bellucci & Stefano Orlando & Luca Medici & Antonio Lettino & Alessio Mezzi & Saulius Kaciulis & Daniele Maria Trucchi, 2023. "Nanostructured Thermoelectric PbTe Thin Films with Ag Addition Deposited by Femtosecond Pulsed Laser Ablation," Energies, MDPI, vol. 16(7), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:10958-10970:d:56584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.