IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i6p3618-3641d36714.html
   My bibliography  Save this article

A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV) Systems with Maximum Power Point Tracking (MPPT)

Author

Listed:
  • Tofael Ahmed

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

  • Tey Kok Soon

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

  • Saad Mekhilef

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia)

Abstract

In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT) is proposed for photovoltaic (PV) systems. This proposed system utilizes a single-ended primary inductor (SEPIC) converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP) and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

Suggested Citation

  • Tofael Ahmed & Tey Kok Soon & Saad Mekhilef, 2014. "A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV) Systems with Maximum Power Point Tracking (MPPT)," Energies, MDPI, vol. 7(6), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:6:p:3618-3641:d:36714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/6/3618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/6/3618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    2. Yifan Yu & Qianfan Zhang & Bin Liang & Xiaofei Liu & Shumei Cui, 2011. "Analysis of a Single-Phase Z-Source Inverter for Battery Discharging in Vehicle to Grid Applications," Energies, MDPI, vol. 4(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoudao Huang & Yang Zhang & Zhikang Shuai, 2016. "Capacitor Voltage Ripple Suppression for Z-Source Wind Energy Conversion System," Energies, MDPI, vol. 9(1), pages 1-15, January.
    2. Vivek Sharma & M. J. Hossain & S. M. Nawazish Ali & Muhammad Kashif, 2020. "A Photovoltaic-Fed Z-Source Inverter Motor Drive with Fault-Tolerant Capability for Rural Irrigation," Energies, MDPI, vol. 13(18), pages 1-19, September.
    3. Shu-Huai Zhang & Feng-Zhang Luo & Yi-Feng Wang & Jiang-Hua Liu & Yong-Peng He & Yue Dong, 2017. "Control Method Based on Demand Response Needs of Isolated Bus Regulation with Series-Resonant Converters for Residential Photovoltaic Systems," Energies, MDPI, vol. 10(6), pages 1-21, May.
    4. Shoudao Huang & Yang Zhang & Sijia Hu, 2016. "Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System," Energies, MDPI, vol. 9(10), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raud, Ralf & Cholette, Michael E. & Riahi, Soheila & Bruno, Frank & Saman, Wasim & Will, Geoffrey & Steinberg, Theodore A., 2017. "Design optimization method for tube and fin latent heat thermal energy storage systems," Energy, Elsevier, vol. 134(C), pages 585-594.
    2. Zini, Gabriele & Mangeant, Christophe & Merten, Jens, 2011. "Reliability of large-scale grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 36(9), pages 2334-2340.
    3. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    4. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    5. Dias, Luís & Gouveia, João Pedro & Lourenço, Paulo & Seixas, Júlia, 2019. "Interplay between the potential of photovoltaic systems and agricultural land use," Land Use Policy, Elsevier, vol. 81(C), pages 725-735.
    6. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    7. Ku Ahmad, Ku Nurul Edhura & Selvaraj, Jeyraj & Rahim, Nasrudin Abd, 2013. "A review of the islanding detection methods in grid-connected PV inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 756-766.
    8. Mirhassani, SeyedMohsen & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2015. "Advances and challenges in grid tied photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 121-131.
    9. Patrao, Iván & Figueres, Emilio & González-Espín, Fran & Garcerá, Gabriel, 2011. "Transformerless topologies for grid-connected single-phase photovoltaic inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3423-3431, September.
    10. Jing Yuan & Yongheng Yang & Frede Blaabjerg, 2020. "A Switched Quasi-Z-Source Inverter with Continuous Input Currents," Energies, MDPI, vol. 13(6), pages 1-12, March.
    11. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    12. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    13. Qureshi, Tahir Masood & Ullah, Kafait & Arentsen, Maarten J., 2017. "Factors responsible for solar PV adoption at household level: A case of Lahore, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 754-763.
    14. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Piršl, Danica S., 2015. "Performance analysis of A grid-connected solar PV plant in Niš, republic of Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 423-435.
    15. Dhanuja Lekshmi J & Zakir Hussain Rather & Bikash C Pal, 2021. "A New Tool to Assess Maximum Permissible Solar PV Penetration in a Power System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    16. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    17. Taiying Zheng & Huan Yang & Rongxiang Zhao & Yong Cheol Kang & Vladimir Terzija, 2018. "Design, Evaluation and Implementation of an Islanding Detection Method for a Micro-grid," Energies, MDPI, vol. 11(2), pages 1-24, February.
    18. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    19. Zhai, Pei & Larsen, Peter & Millstein, Dev & Menon, Surabi & Masanet, Eric, 2012. "The potential for avoided emissions from photovoltaic electricity in the United States," Energy, Elsevier, vol. 47(1), pages 443-450.
    20. Abraham Alem Kebede & Maitane Berecibar & Thierry Coosemans & Maarten Messagie & Towfik Jemal & Henok Ayele Behabtu & Joeri Van Mierlo, 2020. "A Techno-Economic Optimization and Performance Assessment of a 10 kW P Photovoltaic Grid-Connected System," Sustainability, MDPI, vol. 12(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:6:p:3618-3641:d:36714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.