IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i5p3420-3437d36338.html
   My bibliography  Save this article

Hierarchical Communication Network Architectures for Offshore Wind Power Farms

Author

Listed:
  • Mohamed A. Ahmed

    (Department of Computer Engineering, Chonbuk National University, Jeonju 561-756, Korea)

  • Young-Chon Kim

    (Smart Grid Research Center, Chonbuk National University, Jeonju 561-756, Korea)

Abstract

Nowadays, large-scale wind power farms (WPFs) bring new challenges for both electric systems and communication networks. Communication networks are an essential part of WPFs because they provide real-time control and monitoring of wind turbines from a remote location (local control center). However, different wind turbine applications have different requirements in terms of data volume, latency, bandwidth, QoS, etc. This paper proposes a hierarchical communication network architecture that consist of a turbine area network (TAN), farm area network (FAN), and control area network (CAN) for offshore WPFs. The two types of offshore WPFs studied are small-scale WPFs close to the grid and medium-scale WPFs far from the grid. The wind turbines are modelled based on the logical nodes (LN) concepts of the IEC 61400-25 standard. To keep pace with current developments in wind turbine technology, the network design takes into account the extension of the LNs for both the wind turbine foundation and meteorological measurements. The proposed hierarchical communication network is based on Switched Ethernet. Servers at the control center are used to store and process the data received from the WPF. The network architecture is modelled and evaluated via OPNET. We investigated the end-to-end (ETE) delay for different WPF applications. The results are validated by comparing the amount of generated sensing data with that of received traffic at servers. The network performance is evaluated, analyzed and discussed in view of end-to-end (ETE) delay for different link bandwidths.

Suggested Citation

  • Mohamed A. Ahmed & Young-Chon Kim, 2014. "Hierarchical Communication Network Architectures for Offshore Wind Power Farms," Energies, MDPI, vol. 7(5), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:3420-3437:d:36338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/5/3420/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/5/3420/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gallardo-Calles, Jose-Maria & Colmenar-Santos, Antonio & Ontañon-Ruiz, Javier & Castro-Gil, Manuel, 2013. "Wind control centres: State of the art," Renewable Energy, Elsevier, vol. 51(C), pages 93-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alizadeh, S.M. & Ozansoy, C., 2016. "The role of communications and standardization in wind power applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 944-958.
    2. A. Jain & A. Mani & A. S. Siddiqui, 2019. "Network architecture for demand response implementation in smart grid," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1389-1402, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    2. Ali M. Eltamaly & Mohamed A. Ahmed & Majed A. Alotaibi & Abdulrahman I. Alolah & Young-Chon Kim, 2020. "Performance of Communication Network for Monitoring Utility Scale Photovoltaic Power Plants," Energies, MDPI, vol. 13(21), pages 1-17, October.
    3. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Mur-Pérez, Francisco, 2015. "Repowering: An actual possibility for wind energy in Spain in a new scenario without feed-in-tariffs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 319-337.
    4. Alizadeh, S.M. & Ozansoy, C., 2016. "The role of communications and standardization in wind power applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 944-958.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:5:p:3420-3437:d:36338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.