IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2377-2420d35131.html
   My bibliography  Save this article

Strategies for Power Line Communications Smart Metering Network Deployment

Author

Listed:
  • Alberto Sendin

    (Division of Control Systems and Telecommunications, Iberdrola, Av. San Adrian 48, 48003 Bilbao, Spain)

  • Ivan Peña

    (Department of Communication Engineering, Bilbao Faculty of Engineering, University of the Basque Country (UPV/EHU), Alda. Urkijo S/N, 48013 Bilbao, Spain)

  • Pablo Angueira

    (Department of Communication Engineering, Bilbao Faculty of Engineering, University of the Basque Country (UPV/EHU), Alda. Urkijo S/N, 48013 Bilbao, Spain)

Abstract

Smart Grids are becoming a reality all over the world. Nowadays, the research efforts for the introduction and deployment of these grids are mainly focused on the development of the field of Smart Metering. This emerging application requires the use of technologies to access the significant number of points of supply (PoS) existing in the grid, covering the Low Voltage (LV) segment with the lowest possible costs. Power Line Communications (PLC) have been extensively used in electricity grids for a variety of purposes and, of late, have been the focus of renewed interest. PLC are really well suited for quick and inexpensive pervasive deployments. However, no LV grid is the same in any electricity company (utility), and the particularities of each grid evolution, architecture, circumstances and materials, makes it a challenge to deploy Smart Metering networks with PLC technologies, with the Smart Grid as an ultimate goal. This paper covers the evolution of Smart Metering networks, together with the evolution of PLC technologies until both worlds have converged to project PLC-enabled Smart Metering networks towards Smart Grid. This paper develops guidelines over a set of strategic aspects of PLC Smart Metering network deployment based on the knowledge gathered on real field; and introduces the future challenges of these networks in their evolution towards the Smart Grid.

Suggested Citation

  • Alberto Sendin & Ivan Peña & Pablo Angueira, 2014. "Strategies for Power Line Communications Smart Metering Network Deployment," Energies, MDPI, vol. 7(4), pages 1-44, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2377-2420:d:35131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2377/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2377/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Sendin & Txetxu Arzuaga & Iker Urrutia & Iñigo Berganza & Ainara Fernandez & Laura Marron & Asier Llano & Aitor Arzuaga, 2015. "Adaptation of Powerline Communications-Based Smart Metering Deployments to the Requirements of Smart Grids," Energies, MDPI, vol. 8(12), pages 1-27, November.
    2. Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2016. "Broadband PLC for Clustered Advanced Metering Infrastructure (AMI) Architecture," Energies, MDPI, vol. 9(7), pages 1-19, July.
    3. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    4. Thomas F. Landinger & Guenter Schwarzberger & Guenter Hofer & Matthias Rose & Andreas Jossen, 2021. "Power Line Communications for Automotive High Voltage Battery Systems: Channel Modeling and Coexistence Study with Battery Monitoring," Energies, MDPI, vol. 14(7), pages 1-26, March.
    5. Mario Sanz & José Ignacio Moreno & Gregorio López & Javier Matanza & Julio Berrocal, 2021. "Web-Based Toolkit for Performance Simulation and Analysis of Power Line Communication Networks," Energies, MDPI, vol. 14(20), pages 1-25, October.
    6. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    7. Yazhou Jiang & Chen-Ching Liu & Yin Xu, 2016. "Smart Distribution Systems," Energies, MDPI, vol. 9(4), pages 1-20, April.
    8. Giovanni Artale & Giuseppe Caravello & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Salvatore Guaiana & Ninh Nguyen Quang & Marco Palmeri & Nicola Panzavecchia & Giovanni Tinè, 2020. "A Virtual Tool for Load Flow Analysis in a Micro-Grid," Energies, MDPI, vol. 13(12), pages 1-26, June.
    9. Javier Hernandez Fernandez & Aymen Omri & Roberto Di Pietro, 2022. "PLC Physical Layer Link Identification with Imperfect Channel State Information," Energies, MDPI, vol. 15(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2377-2420:d:35131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.