IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i2p785-803d33042.html
   My bibliography  Save this article

The Influence of Loading Rate and Variable Temperatures on Microbial Communities in Anaerobic Digesters

Author

Listed:
  • Richard J. Ciotola

    (Department of Food, Agricultural and Biological Engineering, The Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr., Columbus, OH 43210, USA)

  • Jay F. Martin

    (Department of Food, Agricultural and Biological Engineering, The Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr., Columbus, OH 43210, USA)

  • Abigail Tamkin

    (Department of Food, Agricultural and Biological Engineering, The Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr., Columbus, OH 43210, USA)

  • Juan M. Castańo

    (Facultad de Ciencias Ambientales, Universidad Tecnológica de Pereira (Faculty of Environmental Sciences, Technological University of Pereira), Apartado Aéreo 097, Pereira 660017, Colombia)

  • James Rosenblum

    (Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Cunz Hall, 1841 Neil Avenue, Columbus, OH 43210, USA)

  • Michael S. Bisesi

    (Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Cunz Hall, 1841 Neil Avenue, Columbus, OH 43210, USA)

  • Jiyoung Lee

    (Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Cunz Hall, 1841 Neil Avenue, Columbus, OH 43210, USA
    Department of Food Science and Technology, The Ohio State University, Parker Food Science and Technology Building, 2015 Fyfe Road, Columbus, OH 43210, USA)

Abstract

The relationship between seasonal temperatures, organic loading rate (OLR) and the structure of archaeal communities in anaerobic digesters was investigated. Previous studies have often assessed archaeal community structure at fixed temperatures and constant OLRs, or at variable temperatures not characteristic of temperate climates. The goal of this study was to determine the maximum OLR that would maintain a balanced microbial ecosystem during operation in a variable temperature range expected in a temperate climate (27–10 °C). Four-liter laboratory digesters were operated in a semi-continuous mode using dairy cow manure as the feedstock. At OLRs of 1.8 and 0.8 kg VS/m 3 ·day the digesters soured (pH < 6.5) as a result of a decrease in temperature. The structure of the archaeal community in the sour digesters became increasingly similar to the manure feedstock with gains in the relative abundance of hydrogenotrophic methanogens. At an OLR of 0.3 kg VS/m 3 ·day the digesters did not sour, but the archaeal community was primarily hydrogenotrophic methanogens. Recommendations for operating an ambient temperature digester year round in a temperate climate are to reduce the OLR to at least 0.3 kg VS/m 3 ·day in colder temperatures to prevent a shift to the microbial community associated with the sour digesters.

Suggested Citation

  • Richard J. Ciotola & Jay F. Martin & Abigail Tamkin & Juan M. Castańo & James Rosenblum & Michael S. Bisesi & Jiyoung Lee, 2014. "The Influence of Loading Rate and Variable Temperatures on Microbial Communities in Anaerobic Digesters," Energies, MDPI, vol. 7(2), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:2:p:785-803:d:33042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/2/785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/2/785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    2. Richard J. Ciotola & Jay F. Martin & Juan M. Castańo & Jiyoung Lee & Frederick Michel, 2013. "Microbial Community Response to Seasonal Temperature Variation in a Small-Scale Anaerobic Digester," Energies, MDPI, vol. 6(10), pages 1-18, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renjun Ruan & Jiashun Cao & Chao Li & Di Zheng & Jingyang Luo, 2017. "The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester," Energies, MDPI, vol. 10(2), pages 1-19, February.
    2. Juan M. Castano & Jay F. Martin & Richard Ciotola, 2014. "Performance of a Small-Scale, Variable Temperature Fixed Dome Digester in a Temperate Climate," Energies, MDPI, vol. 7(9), pages 1-16, September.
    3. Akindolire, Muyiwa Ajoke & Rama, Haripriya & Roopnarain, Ashira, 2022. "Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    2. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    3. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    5. Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
    6. Stefan Heiske & Linas Jurgutis & Zsófia Kádár, 2015. "Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters," Energies, MDPI, vol. 8(3), pages 1-15, March.
    7. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    8. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    9. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    10. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    11. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    12. Ornelas-Ferreira, B. & Lobato, L.C.S. & Colturato, L.F.D. & Torres, E.O. & Pombo, L.M. & Pujatti, F.J.P. & Araújo, J.C. & Chernicharo, C.A.L., 2020. "Strategies for energy recovery and gains associated with the implementation of a solid state batch methanization system for treating organic waste from the city of Rio de Janeiro - Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1976-1983.
    13. Siwal, Samarjeet Singh & Zhang, Qibo & Devi, Nishu & Saini, Adesh Kumar & Saini, Vipin & Pareek, Bhawna & Gaidukovs, Sergejs & Thakur, Vijay Kumar, 2021. "Recovery processes of sustainable energy using different biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    15. Li, Kun & Liu, Ronghou & Sun, Chen, 2016. "A review of methane production from agricultural residues in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 857-865.
    16. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Mohammad Al-Addous & Motasem N. Saidan & Mathhar Bdour & Mohammad Alnaief, 2018. "Evaluation of Biogas Production from the Co-Digestion of Municipal Food Waste and Wastewater Sludge at Refugee Camps Using an Automated Methane Potential Test System," Energies, MDPI, vol. 12(1), pages 1-11, December.
    18. Md. Alhaz Uddin & Sk. Yasir Arafat Siddiki & Shams Forruque Ahmed & Zahidul Islam Rony & M. A. K. Chowdhury & M. Mofijur, 2021. "Estimation of Sustainable Bioenergy Production from Olive Mill Solid Waste," Energies, MDPI, vol. 14(22), pages 1-11, November.
    19. Liu, Nuo & Wang, Quan & Jiang, Jianguo & Zhang, Haowei, 2017. "Effects of salt and oil concentrations on volatile fatty acid generation in food waste fermentation," Renewable Energy, Elsevier, vol. 113(C), pages 1523-1528.
    20. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:2:p:785-803:d:33042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.