IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i10p6665-6688d41275.html
   My bibliography  Save this article

Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

Author

Listed:
  • Shouliang Han

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Shumei Cui

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Liwei Song

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

  • Ching Chuen Chan

    (Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150080, China)

Abstract

The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM) is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not only inherits the merits of switched reluctance machine, such as simple salient rotor structure, high reliability and wide speed range, but also can avoid the outer rotor’s cooling problem effectively. By using an equivalent magnetic circuit model, the function of middle rotor yoke is analyzed. Electromagnetic analyses of the SRDRM are performed with analytical calculations and 2-D finite element methods, including the effects of main parameters on performance. Finally, a 4.4 kW prototype machine is designed and manufactured, and the tests are performed, which validate the proposed design method.

Suggested Citation

  • Shouliang Han & Shumei Cui & Liwei Song & Ching Chuen Chan, 2014. "Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles," Energies, MDPI, vol. 7(10), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:10:p:6665-6688:d:41275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/10/6665/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/10/6665/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.
    2. Qingsong Wang & Shuangxia Niu, 2015. "Electromagnetic Design and Analysis of a Novel Fault-Tolerant Flux-Modulated Memory Machine," Energies, MDPI, vol. 8(8), pages 1-17, August.
    3. Abdoulaye Sarr & Imen Bahri & Eric Berthelot & Abdoulaye Kebe & Demba Diallo, 2020. "Switched Reluctance Generator for Low Voltage DC Microgrid Operation: Experimental Validation," Energies, MDPI, vol. 13(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:10:p:6665-6688:d:41275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.